We can observe physical properties of elements and compounds without changing the substance.
Examples of physical properties: Density, color, boiling point, state of matter, appearance: dull or shiny, etc.
But we can also observe and measure chemical properties by reacting a substance with something else. For example, like mixing baking soda and vinegar together. The vinegar reacts with the baking soda and produces carbon dioxide: a new substance.
Some examples of chemical properties: Flammability, amount of heat that is released during combustion, toxicity (how much damage it causes to other organisms), radioactivity, and ability to oxidize (when you have metal that becomes rusty looking).
Answer:
durage
Explanation:
durage just doesn't make sense compared to the other 3
Answer:
The electronengativity values of given elements is as follows.
Fluorine - 4
Chlorine -3
Bromine - 2.9
Iodine- 2.5
Explanation:
Electronegativity =consant (I.E-E.A)
The electron affinity and ionization energy values of the given elements is as follows.
(In attachment)
First we have to find the value of constant by using the fluorine atom to whom the electronengativity taken as "4".
<u>Fluorine:</u>
![4=constant[1678-(-327.8)]](https://tex.z-dn.net/?f=4%3Dconstant%5B1678-%28-327.8%29%5D)

By using this constant values we can find electronegatvity values of remaining elements.
<u>Chlorine:</u>
![Electronegativity=0.0019942168[1255+348.7]=3.1980\sim 3](https://tex.z-dn.net/?f=Electronegativity%3D0.0019942168%5B1255%2B348.7%5D%3D3.1980%5Csim%203)
Therefore, electronegativity of chlorine is 3.
<u>Bromine:</u>
![Electronegativity=0.0019942168[1138+324.5]=2.91\sim 2.9](https://tex.z-dn.net/?f=Electronegativity%3D0.0019942168%5B1138%2B324.5%5D%3D2.91%5Csim%202.9)
Therefore, electronegativity of bromine is 2.9.
<u>Iodine:</u>
![Electronegativity=0.0019942168[1007+295.7]=2.59\sim 2.5](https://tex.z-dn.net/?f=Electronegativity%3D0.0019942168%5B1007%2B295.7%5D%3D2.59%5Csim%202.5)
Therefore, electronegativity of iodine is 2.5.
Answer: Option (c) is the correct answer.
Explanation:
A limiting reagent is defined as a reagent that completely gets consumed in a chemical reaction. A limiting reagent limits the formation of products.
For example, we have given 5 mol of A and the reaction is 
Whereas when 4 mol B will react with 2 mol of A. Hence, 8 mol of B will react with 4 mol A as follows.
= 4 mol
As, the given moles of A is more than the required moles. Thus, it is considered as an excess reagent.
Hence, B is a limiting reagent because it limits the formation of products.
Thus, we can conclude that limiting reactant is the term used to describe the reactant that is used up completely and controls the amount of product that can be produced during a chemical reaction.
Answer:
water was added to powdered rock
Explanation: