1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klio [65]
3 years ago
8

The diagram shows a ballistic pendulum. A 200 g bullet is fired into the suspended 4 kg block of wood and remains embedded insid

e it (a perfectly inelastic collision). After the impact of the bullet, the block swings up to a maximum height h. The initial speed of the bullet was 50 m/s.
Physics
1 answer:
adoni [48]3 years ago
5 0

Question

What was the initial momentum of the bullet before collision?

Answer:

10 Kg.m/s

Explanation:

Momentum is a product of velocity of an object in m/s and its mass in kgs hence numerically expressed as p=mv where p is momentum, v is velocity and m is mass. Substituting m for 0.2 kg and v for 50 m/s then p=0.2*50=10 kg.m/s

You might be interested in
A force F=0.12N is aplied on spring and spring elongates by 3cm . specific constant of spring ​
PilotLPTM [1.2K]

The spring constant is 4 N/m

Explanation:

When a spring is stretched/compressed by the application of a force, the relationship between the magnitude of the force applied and the elongation of the spring is given by Hooke's law:

F=kx

where

F is the magnitude of the spring applied

k is the spring constant

x is the elongation of the spring, relative to its equilibrium position

For the spring in this problem, we have:

F = 0.12 N (force applied)

x = 3 cm = 0.03 m (elongation of the spring)

Therefore, we can solve the formula for k to find the spring constant:

k=\frac{F}{x}=\frac{0.12}{0.03}=4 N/m

Learn more about forces:

brainly.com/question/8459017

brainly.com/question/11292757

brainly.com/question/12978926

#LearnwithBrainly

4 0
3 years ago
Kinetic friction acts on a baseball player sliding into first base. Will the player's velocity change?
Law Incorporation [45]
Yes, his velocity will decrease the further he slides.
7 0
3 years ago
a moving billiard ball collides with an identical stationary billiard ball in an elastic collision. after the collision, the sec
MArishka [77]

A billiard ball collides with a stationary identical billiard ball to make it move. If the collision is perfectly elastic, the first ball comes to rest after collision.

<h3>Why does the first ball comes to rest after collision ?</h3>

Let m be the mass of the two identical balls.  

u1 = velocity before the collision of ball 1

u2 = 0 = velocity of second ball that is at rest

v1 and v2 are the velocities of the balls after the collision.

From the conservation of momentum,

∴ mu1 + mu2 = mv1 + mv2

∴ mu1 = mv1 + mv2

∴ u1 = v1 + v2

In an elastic collision, the kinetic energy of the system before and after collision remains same.

\frac{1}{2}  mu_1^2+0=\frac{1}{2}  mv_1^2+\frac{1}{2}  mv_2^2

∴  \frac{1}{2}  m(v_1+v_2 )^2=\frac{1}{2} mv_1^2+\frac{1}{2}mv_2^2

∴ \frac{1}{2} mv_1^2+\frac{1}{2} mv_2^2+mv_1 v_2=\frac{1}{2}  mv_1^2+\frac{1}{2} mv_2^2

∴ mv₁v₂ = 0

  1. It is impossible for the mass to be zero.
  2. Because the second ball moves, velocity v2 cannot be zero.
  3. As a result, the velocity of the first ball, v1, is zero, indicating that it comes to rest after collision.
<h3>What is collision ?</h3>

An elastic collision is a collision between two bodies in which the total kinetic energy of the two bodies remains constant. There is no net transfer of kinetic energy into other forms such as heat, noise, or potential energy in an ideal, fully elastic collision.

Can learn more about elastic collision from brainly.com/question/12644900

#SPJ4

3 0
1 year ago
How did Aristotle's inability to detect parallax lead him to propose a geocentric model of the Solar System.
sasho [114]
He reasoned that since parallax could not be observed for celestial objects near the sun, then the earth was stationary. This erroneous assumption was because at the time he had no way of knowing that celestial objects were so far away that their parallax angles were too small to detect.
6 0
3 years ago
A 3.0 kg box is sliding along a frictionless horizontal surface with a speed of 1.8 m/s when it encounters a spring. (a) Determi
krok68 [10]

Answer:

a) k = 2231.40 N/m

b) v = 0.491 m/s

Explanation:

Let k be the spring force constant , x be the compression displacement of the spring and v be the speed of the box.

when the box encounters the spring, all the energy of the box is kinetic energy:

the energy relationship between the box and the spring is given by:

1/2(m)×(v^2) = 1/2(k)×(x^2)

    (m)×(v^2) = (k)×(x^2)

a) (m)×(v^2) = (k)×(x^2)

                 k = [(m)×(v^2)]/(x^2)

                 k = [(3)×((1.8)^2)]/((6.6×10^-2)^2)

                 k = 2231.40 N/m

Therefore, the force spring constant is 2231.40 N/m

b) (m)×(v^2) = (k)×(x^2)

             v^2 = [(k)(x^2)]/m

                 v =  \sqrt{ [(k)(x^2)]/m}

                 v = \sqrt{ [(2231.40)((1.8×10^-2)^2)]/(3)}

                    = 0.491 m/s

8 0
2 years ago
Read 2 more answers
Other questions:
  • Auroras occur in the _______. a. troposphere b. stratosphere c. mesosphere d. thermosphere
    9·2 answers
  • Home Run
    11·1 answer
  • Which statement correctly compares sound and light waves ​
    15·1 answer
  • How is a net electric charge produced?​
    13·1 answer
  • Which of the following describe an electrical motor? Check all that apply
    7·1 answer
  • suppose the ball has the smallest possible frequency that allows it to go all the way around the circle. what tension in the str
    11·1 answer
  • CAN SOMEONE PLS HELP ME ILL GIVE YOU BRAINLIEST
    5·2 answers
  • Prank text my sister, I wanna see her reaction.<br><br> ‪(346) 298-3870‬
    14·1 answer
  • Energy that vibrates electrons causing electricity
    10·1 answer
  • What is meant by a quantity ? Mention any three system of unit that you know to measure a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!