16.4 grams is the mass of solute in a 500 mL solution of 0.200 M
.
sodium phosphate
Explanation:
Given data about sodium phosphate
atomic mass of Na3PO4 = 164 grams/mole
volume of the solution = 500 ml or 0.5 litres
molarity of sodium phosphate solution = 0.200 M
The formula for molarity will be used here to know the mass dissolved in the given volume of the solution:
The formula is
molarity = 
putting the values in the equation, we get
molarity x volume = number of moles
0.200 X 0.5= number of moles
number of moles = 0.1 moles
Atomic mass x number of moles = mass
putting the values in the above equation
164 x 0.1 = 16.4 grams
16.4 grams of sodium phosphate is present in 0.5 L of the solution to make a 0.2 M solution.
I hope you understood
hit me up if you have any other questions :>
Calculate the mass of the solute <span>in the solution :
Molar mass KCl = </span><span>74.55 g/mol
m = Molarity * molar mass * volume
m = 0.9 * 74.55 * 3.5
m = 234.8325 g
</span><span>To prepare 0.9 M KCl solution, weigh 234.8325 g of salt in an analytical balance, dissolve in a beaker, shortly after transfer with the help of a funnel of transfer to a volumetric flask of 100 cm</span>³<span> and complete with water up to the mark, then cover the balloon and finally shake the solution to mix
hope this helps!</span>
Answer:
Energy is released when bonds are broken, and energy is absorbed when bonds are formed.
Answer:
78 kPa
Explanation:
The total pressure is the sum of the partial pressures:
240 = Pa + Pb + Pc
240 = 107 + 55 + Pc
Pc = 78 kPa