Answer:
40.73 L.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm (P = 121.59 kPa/101.325 = 1.2 atm).
V is the volume of the gas in L (V = ??? L).
n is the no. of moles of the gas in mol (n = 2.0 mol).
R is the general gas constant (R = 0.082 L.atm/mol.K),
T is the temperature of the gas in K (T = 25°C + 273 = 298 K).
<em>∴ V = nRT/P</em> = (2.0 mol)(0.082 L.atm/mol.K)(298 K)/(1.2 atm) = <em>40.73 L.</em>
Answer:
reaction 1 and reaction 4 both are decomposition reactions
while reaction 2 is double displacement reaction and reaction 3 and 5 are combination reactions
Answer: potential.
Chemical energy is the energy provided by a chemical reaction.
Kinetic energy is the energy due to the speed.
Potential energy is the energy due to the position. For example, an object on the top of a mountain, has the possibility to perform work if it falls.
Electromagnetic energy. is propagated by waves: radio waves, infrared radiation, microwaves, etc.
Answer:
<h2>3.25 </h2>
Explanation:
The pH of a solution can be found by using the formula
![pH = - log [ { H_3O}^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5B%20%7B%20H_3O%7D%5E%7B%2B%7D%5D)
From the question we have

We have the final answer as
<h3>3.25 </h3>
Hope this helps you
This is because oxygen (2.8.6) requires two electrons on its valence shell to attain stable configuration (2.8.8). Hydrogen (1) on the other hand requires one electron on its valence shell to attain stable configuration (2). Therefore in a covalent bond, it requires two hydrogen and one oxygen to share electrons and achieve stable configuration.