Answer:
20 km
Explanation:
he walks 10 km + another 10 km so 20 :)
Answer:
THE HEAT NEEDED TO CHANGE 3KG OF WATER FROM 10 C TO 80 C IS 877.8kJ OR 877,800 J.
Explanation:
Mass = 3.0 kg = 3 * 1000 = 3000 g
Initial temperature = 10 C
Final temperature = 80 C
Change in temperature = 80 - 10 = 70 C
Specific heat of water = 4.18 J/g C
Heat needed = unknown
Heat is the amount of energy in joules needed to change a gram of water by 1 C.
Heat = mass * specific heat * change in temperature
Heat = 3000 g * 4.18 J/g C * 70 C
Heat = 877 800 Joules
Heat = 877.8 kJ.
The heat needed to change 3 kg mass of water from 10 C to 80 C is 877,800 J or 877.8 kJ.
Explanation:
Depression in Freezing point
= Kf × i × m
where m is molality , i is Van't Hoff factor, m = molality
Since molality and Kf remain the same
depression in freezing point is proportional to i
i= 2 for CuSO4 ( CuSO4----------> Cu+2 + SO4-2
i=1 for C2h6O
i= 3 for MgCl2 ( MgCl2--------> Mg+2+ 2Cl-)
So the freezing point depression is highest for MgCl2 and lowest for C2H6O
so freezing point of the solution = freezing point of pure solvent- freezing point depression
since MgCl2 has got highest freezing point depression it will have loweest freezing point and C2H6O will have highest freezing point
PH scale is used to determine how acidic or basic a solution is.
we have been given the hydrogen ion concentration. Using this we can calculate pH,
pH = - log[H⁺]
pH = - log (1 x 10⁻¹ M)
pH = 1
using pH can calculate pOH
pH + pOH = 14
pOH = 14 - 1
pOH = 13
using pOH we can calculate the hydroxide ion concentration
pOH = - log [OH⁻]
[OH⁻] = antilog(-pOH)
[OH⁻] = 10⁻¹³ M
hydroxide ion concentration is 10⁻¹³ M
The answer would be B because you can go and find evidence and facts to conduct an investigation on that.