Answer:
D.
The concentration of reactants and the concentration of products are constant.
Explanation:
pls mark as brainliest
D. They all contain carbon as an important part of their structure.
Answer:
When C1 is labeled in glucose, it ends up in the methyl group of pyruvate.
Aldolase cleaves a hexose into two trioses.
[See the image attached].
Asterisk indicates the label.
When C1 is labeled in glucose, it ends up in the carboxyl group of pyruvate.
Answer:
0.382 atm
Explanation:
In order to find the pressure, you need to know the moles of carbon dioxide (CO₂) gas. This can be found by multiplying the mass (g) by the molar mass (g/mol) of CO₂. It is important to arrange the conversion in a way that allows for the cancellation of units.
Molar Mass (CO₂): 12.011 g/mol + 2(15.998 g/mol)
Molar Mass (CO₂): 44.007 g/mol
15 grams CO₂ 1 mole
---------------------- x ------------------------ = 0.341 moles CO₂
44.007 grams
To find the pressure, you need to use the Ideal Gas Law equation.
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas Constant (0.08206 atm*L/mol*K)
-----> T = temperature (K)
After you convert Celsius to Kelvin, you can plug the given and calculated values into the equation and simplify to find the pressure.
P = ? atm R = 0.08206 atm*L/mol*K
V = 20 L T = 0 °C + 273.15 = 273.15 K
n = 0.341 moles
PV = nRT
P(20 L) = (0.341 moles)(0.08206 atm*L/mol*K)(273.15 K)
P(20 L) = 7.64016
P = 0.382 atm
8.04 mL.
<h3>Explanation</h3>
How many moles of NaOH?
Note the unit:
.
.
How many moles of HCl?
As seen in the equation, HCl and NaOH reacts at a 1:1 ratio.
.
How many mL of HCl?
.