Answer:
28 g/mol, N2
Explanation:
Given data:
Volume of gas = 5.0 L
Mass of gas = 6.3 g
Pressure = 1 atm
Temperature = 273 K
Molar mass of gas = ?
Solution:
We will calculate the density first.
d = mass/ volume
d = 6.3 g/ 5.0 L
d = 1.26 g/L
Molar mass:
d = PM/RT
M = dRT/P
M = 1.26 g/L× 0.0821 atm.L/mol.K × 273 K/ 1 atm
M = 28 g/mol
Molar mass of N₂ is 28 g/mol thus given gas is N₂.
Answer is: volume of carbon dioxide is 1,84·10⁸ l.
Chemical reaction: C + O₂ → CO₂.
m(C) = 100 t · 1000 kg/t = 100000 kg
m(C) = 100000 kg · 1000 g/kg = 10⁸ g.
n(C) = m(C) ÷ M(C).
n(C) = 10⁸ g ÷ 12 g/mol.
n(C) = 8,33·10⁶ mol.
From chemical reaction: n(C) . n(CO₂) = 1 : 1.
n(CO₂) = 8,33·10⁶ mol.
m(CO₂) = 8,33·10⁶ mol · 44 g/mol.
m(CO₂) = 3,66·10⁸ = 3,66·10⁵ kg.
V(CO₂) = 3,66·10⁵ kg ÷ 1,98 kg/m³ = 1,84·10⁵ m³.
V(CO₂) = 1,84·10⁵ m³ · 1000 l/m³ = 1,84·10⁸ l.
Maybe they had to consider the habitat to make sure the habitat they were releasing the dragonflies into would be appropriate for the dragonflies.
Answer:
Required number of moles of ideal gas is 0.877 moles.
Explanation:
Pressure (P) = 0.850 atm
Temperature (T) = 295 K
Volume (V) = 25 ltr
Universal gas constant (R) = 0.0821
no of moles (n) = ?
we have the ideal gas equation as:
PV= nRT
or, 0.850× 25 = n × 0.0821 × 295
or, n = 0.877 moles
Hence the required number of moles of an ideal gas is 0.877 moles.
False-- most of the time not enough energy is put into the system, so the compounds or whatever cant break down fully into their elements