Answer:
The electrons that occupy the outermost shell of an atom are called valence electrons. Valence electrons are important because they determine how an atom will react. By writing an electron configuration, you'll be able to see how many electrons occupy the highest energy level .
Answer:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Explanation:
Hello,
In this case, for the equilibrium condition, the equilibrium constant is defined via the law of mass action, which states that the division between the concentrations of the products over the concentration of the reactants at equilibrium equals the equilibrium constant, for the given reaction:

The suitable equilibrium constant turns out:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Or in terms of the initial equilibrium constant:

Since the second reaction is a doubled version of the first one.
Best regards.
My dream job is to create my own business and become my own boss
If the grade of the ore is 37.3% nickel, then the unknown quantity to get 10 grams of nickel is 0.373 x = 10 grams or x = 10/0.373=26.8 grams or 0.0268 kg needed to dig up to recover the 10 grams of nickel. At this grade of ore, 1 kilogram would yield 373 grams of nickel.