The answer to this question would be: 3.125%
Half-life is the time needed for a radioactive molecule to decay half of its mass. In this case, the strontium-89 is already gone past 5 half lives. Then, the percentage of the mass left after 5 half-lives should be:
100%*(1/2^5)= 100%/32=3..125%
Answer:
Helium
Explanation:
The first ionization energy varies in a predictable way across the periodic table.
Answer:
it depends where you live really... lol
Answer:

Explanation:
Hello,
In this case, by knowing that the heat due to a change of temperature is given by:

Whereas Q accounts for the heat, m for the mass, Cp the heat capacity and ΔT for the change in temperature. In such a way the required heat results:

Best regards.
Answer: The distance is slightly less than 3.5 m
Explanation: assuming wall and target are the same thing, and the bullet has constant velocity, the bullet will travel 7 m in half a second, so half that distance is 3.5 m.
In reality, the bullet is decelerating (at an unknown rate) so the distance is slightly less than 3.5 m.
There is also a vertical velocity component, which means it hits the target/wall at an angle. The trajectory is such that it hits the wall above the shooter because the ricochet hits at ~the level at which it left the firearm.
If the wall was absent, the bullet would have described a parabola which brough it back to the initial level after 7m. This could be calculated, but it means that the actual distance between the shooter and the wall is slightly less than 3.5 m
In addition, the collision with the wall is not 100% elastic, so the velocity aftercthe ricochetvis further reduced.
A calculation would be complex because these confounding factors are not completely independent of each other, but all reduce the average velocity and therefore the distance.
Therefore it is only possible to say that the distance was somewhat less than 3.5 m