Answer: Outside an intersections
Explanation:
Answer:
And Im still going with B..
The system includes a disk rotating on a frictionless axle and a bit of clay transferring towards it, as proven withinside the determine above.
<h3>What is the
angular momentum?</h3>
The angular momentum of the device earlier than and after the clay sticks can be the same.
Conservation of angular momentum the precept of conservation of angular momentum states that the whole angular momentum is usually conserved.
- Li = Lf where;
- li is the preliminary second of inertia
- If is the very last second of inertia
- wi is the preliminary angular velocity
- wf is the very last angular velocity
- Li is the preliminary angular momentum
- Lf is the very last angular momentum
Thus, the angular momentum of the device earlier than and after the clay sticks can be the same.
Read more about the frictionless :
brainly.com/question/13539944
#SPJ4
Answer:
26.7 min
Explanation:
First, we will find the <u>time required to drill each hole</u>:
- N = 300 x 12/0.75
= 1527.7 rev/min
- fr = 1527.7 (0.015) = 22.916 in/min
Formula for <u>distance per hole</u>: 0.5 + A + 1.75
- A = 0.5 (0.75) tan (90-100 / 2) = 0.315 in
- Tm = (0.5 + 0.315 + 1.75) / 22.916 = 0.112 min
Now, we will calculate the <u>time required to draw back the drill form hole</u>:
= 0.112 / 2 = 0.056 min
Time to move between holes = 1.5 / 15 = 0.1 min
For 100 holes, the number of moves between holes = 99
Total time required to drill 100 holes (t):
t = 100 (0.112 + 0.056) + 99 (0.1) = 26.7 min
Answer:
0.740833917 ton/hr
Explanation:
Given:
Cooling load, 8890.007 Btu/hr = 2.605 kW
Room size = 180 
According to the thumb rule
1 ton of refrigerant = 12000Btu
Hence for 8890.007 Btu/hr,
the mass flow rate of the refrigerant is =8890.007 / 12000
= 0.740833917 ton per hr
Hence, mass flow rate is 0.740833917 ton/hr