1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
quester [9]
3 years ago
12

What is a definition for reactivity with vinegar?

Physics
1 answer:
STALIN [3.7K]3 years ago
6 0
The answer to this is Chemical property. 
You might be interested in
When an experiment is replicated, how should the results of the two experiments compare?
olasank [31]
When the experiment is replicated, this means the conduction of the second experiment, should be related, or similar, to your first results. 
4 0
3 years ago
Read 2 more answers
Where does a rider on a roller coaster get energy?
Annette [7]
Gravitational potential energy.

As the rider falls, the GPE is converted into kinetic energy.
5 0
3 years ago
Read 2 more answers
Near the equator, the patterns of convection currents are called ________.
tatyana61 [14]
<span>Near the equator, the patterns of convection currents are called Hadley Cells.
</span>

Hadley Cells refers to the low-latitude overturning movements that have air increasing at the equator and air dropping at roughly latitude of 30 degree and these cells are also responsible for the trade winds in the Tropics and control low-latitude patterns of weather.

8 0
3 years ago
After spending two hours trying to solve an engineering problem, Amira finally gave up. As she was trying to fall asleep that ni
I am Lyosha [343]

Answer:

Insight

Explanation:

In psychology insight has been described as a sudden knowledge or solution that just came up especially after several attempts to solve the problem.Like Amira after spending two hours to solution and she has given up before the solution finally came up. Answers or solutions from insights are more reliable that non-insightful answers.

Gestalt Psychology, a 20th century psychologist was the first to carry out as study on insight where he saw it as a sudden seeing the problem in a new way or linking the problem to other problem or solution pair or release certain blockages prevent one from seeing the solution etc.

5 0
3 years ago
A torus is formed when a circle of radius 3 centered at (5 comma 0 )is revolved about the​ y-axis. a. Use the shell method to wr
arlik [135]

Answer:

a) V=4\pi\int\limits^8_2 {x\sqrt{9-(x-5)^{2}}} \, dx

b) V=20\pi\int\limits^3_{-3} {\sqrt{9-y^{2}}} \, dy

c) V=90\pi ^{2}

Explanation

In order to solve these problems, we must start by sketching a drawing of what the graph of the problem looks like, this will help us analyze the drawing better and take have a better understanding of the problem (see attached pictures).

a)

On part A we must build an integral for the volume of the torus by using the shell method. The shell method formula looks like this:

V=\int\limits^a_b {2\pi r y } \, dr

Where r is the radius of the shell, y is the height of the shell and dr is the width of the wall of the shell.

So in this case, r=x so dr=dx.

y is given by the equation of the circle of radius 3 centered at (5,0) which is:

(x-5)^{2}+y^{2}=9

when solving for y we get that:

y=\sqrt{9-(x-5)^{2}}

we can now plug all these values into the shell method formula, so we get:

V=\int\limits^8_2 {2\pi x \sqrt{9-(x-5)^{2}} } \, dx

now there is a twist to this problem since that will be the formula for half a torus.Luckily for us the circle is symmetric about the x-axis, so we can just multiply this integral by 2 to get the whole volume of the torus, so the whole integral is:

V=\int\limits^8_2 {4\pi x \sqrt{9-(x-5)^{2}} } \, dx

we can take the constants out of the integral sign so we get the final answer to be:

V=4\pi\int\limits^8_2 {x\sqrt{9-(x-5)^{2}}} \, dx

b)

Now we need to build an integral equation of the torus by using the washer method. In this case the formula for the washer method looks like this:

V=\int\limits^b_a{\pi(R^{2}-r^{2})} \, dy

where R is the outer radius of the washer and r is the inner radius of the washer and dy is the width of the washer.

In this case both R and r are given by the x-equation of the circle. We start with the equation of the circle:

(x-5)^{2}+y^{2}=9

when solving for x we get that:

x=\sqrt{9-y^{2}}+5

the same thing happens here, the square root can either give you a positive or a negative value, so that will determine the difference between R and r, so we get that:

R=\sqrt{9-y^{2}}+5

and

r=-\sqrt{9-y^{2}}+5

we can now plug these into the volume formula:

V=\pi \int\limits^3_{-3}{(5+\sqrt{9-y^{2}})^{2}-(5-\sqrt{9-y^{2}})^{2}} \, dy

This can be simplified by expanding the perfect squares and when eliminating like terms we end up with:

V=20\pi\int\limits^3_{-3} {\sqrt{9-y^{2}}} \, dy

c) We are going to solve the integral we got by using the washer method for it to be easier for us to solve, so let's take the integral:

V=20\pi\int\limits^3_{-3} {\sqrt{9-y^{2}}} \, dy

This integral can be solved by using trigonometric substitution so first we set:

y=3 sin \theta

which means that:

dy=3 cos \theta d\theta

from this, we also know that:

\theta=sin^{-1}(\frac{y}{3})

so we can set the new limits of integration to be:

\theta_{1}=sin^{-1}(\frac{-3}{3})

\theta_{1}=-\frac{\pi}{2}

and

\theta_{2}=sin^{-1}(\frac{3}{3})

\theta_{2}=\frac{\pi}{2}

so we can rewrite our integral:

V=20\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {\sqrt{9-(3 sin \theta)^{2}}} \, 3 cos \theta d\theta

which simplifies to:

V=60\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {(\sqrt{9-(3 sin \theta)^{2}}} \, cos \theta d\theta

we can further simplify this integral like this:

V=60\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {(\sqrt{9-9 sin^{2} \theta}}} \, cos \theta d\theta

V=60\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {3(\sqrt{1- sin^{2} \theta})}} \, cos \theta d\theta

V=180\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {(\sqrt{1- sin^{2} \theta})}} \, cos \theta d\theta

V=180\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {(\sqrt{cos^{2} \theta})}} \, cos \theta d\theta

V=180\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {(cos \theta})} \, cos \theta d\theta

V=180\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {cos^{2} \theta}} \, d\theta

We can use trigonometric identities to simplify this so we get:

V=180\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {\frac{1+cos 2\theta}{2}}} \, d\theta

V=90\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {1+cos 2\theta}}} \, d\theta

we can solve this by using u-substitution so we get:

u=2\theta

du=2d\theta

and:

u_{1}=2(-\frac{\pi}{2})=-\pi

u_{2}=2(\frac{\pi}{2})=\pi

so when substituting we get that:

V=45\pi\int\limits^{\pi}_{-\pi} {1+cos u}} \, du

when integrating we get that:

V=45\pi(u+sin u)\limit^{\pi}_{-\pi}

when evaluating we get that:

V=45\pi[(\pi+0)-(-\pi+0)]

which yields:

V=90\pi ^{2}

8 0
3 years ago
Other questions:
  • Explain 2 reasons why reactions take place faster at high temperature
    7·2 answers
  • A force F is used to raise a 4-kg mass M from the ground to a height of 5 m. What is the work done by the force F? (Note: sin 60
    15·1 answer
  • A 40.0-$kg$ body is moving in the direction of the positive x axis with a speed of 238 $m/s$ when, owing to an internal explosio
    10·1 answer
  • Find the speed of a 5.6-kg bowling ball that has a kinetic energy of 25.2 J.
    8·1 answer
  • A device known as an optical resonator is used in lasers. An optical resonator consists of an arrangement of mirrors that reflec
    6·1 answer
  • A partially inflated balloon is faded over the open end of a glass beaker that contains water the beaker is placed in an ice bat
    8·1 answer
  • SHOW WORK
    14·1 answer
  • How does the sun create heat?
    15·2 answers
  • Which statement is true?
    11·1 answer
  • A 15.0-kg child descends a slide 2.40 m high and reaches the bottom with a speed of 1.10 m/s .
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!