Three units deformations observed in these bands.
<h3>What forces do a rubber band encounter?</h3>
Elastic force is the force that permits some materials to regain their former shape after being stretched or crushed. Thus, a stretched rubber band is subject to an elastic force.
The rubber band experiment uses a straightforward rubber band to show entropic force and a refrigeration cycle. The rubber band experiment involves stretching and then releasing a rubber band while measuring its temperature.
Always acting in the opposite direction of motion is friction. This indicates that if friction is there, it cancels out some of the force driving the motion (if the object is being accelerated). This results in a decreased acceleration and a smaller net force.
learn more about Elastic force refer
brainly.com/question/5055063
#SPJ14
<span>Atoms with the same atomic number but different atomic mass are called:
<span>Isotopes</span>
</span>
Hi!
We call these stars <em>main sequence </em>stars. Main sequence stars actually make up around 90% of the stars in our universe!
An interesting thing to note is that our sun is actually a <em />yellow dwarf star, which is a <em>small </em>main sequence star.
Hopefully, this helps! =)
Answer:
38 cm from q1(right)
Explanation:
Given, q1 = 3q2 , r = 60cm = 0.6 m
Let that point be situated at a distance of 'x' m from q1.
Electric field must be same from both sides to be in equilibrium(where EF is 0).
=> k q1/x² = k q2/(0.6 - x)²
=> q1(0.6 - x)² = q2(x)²
=> 3q2(0.6 - x)² = q2(x)²
=> 3(0.6 - x)² = x²
=> √3(0.6 - x) = ± x
=> 0.6√3 = x(1 + √3)
=> 1.03/2.73 = x
≈ 0.38 m = 38 cm = x