Answer:
0.3 m
Explanation:
Initially, the package has both gravitational potential energy and kinetic energy. The spring has elastic energy. After the package is brought to rest, all the energy is stored in the spring.
Initial energy = final energy
mgh + ½ mv² + ½ kx₁² = ½ kx₂²
Given:
m = 50 kg
g = 9.8 m/s²
h = 8 sin 20º m
v = 2 m/s
k = 30000 N/m
x₁ = 0.05 m
(50)(9.8)(8 sin 20) + ½ (50)(2)² + ½ (30000)(0.05)² = ½ (30000)x₂²
x₂ ≈ 0.314 m
So the spring is compressed 0.314 m from it's natural length. However, we're asked to find the additional deformation from the original 50mm.
x₂ − x₁
0.314 m − 0.05 m
0.264 m
Rounding to 1 sig-fig, the spring is compressed an additional 0.3 meters.
Answer:
B. Solids, liquids, and gases.
Explanation:
I have no explanation.
Answer:
PE=0.92414J and KE=0.28175J
Explanation:
Gravitational potential energy=mass*gravity*height
PE=mgh
Data,
M=0.046kg
H=2.05m
g=9.8m/s^2
PE=0.046kg * 9.8m/s^2 * 2.05m
PE =0.92414J
KE=1/2mv^2
M=0.046kg
V=3.5m/s
KE=[(0.046kg)*(3.5m/s)^2]\2
KE=0.28175J
Answer:

Explanation:
We have to take into account the expression for the position of the fringes

where m is the number of the maximum, d is the separation of the slits, D is the distance to the screen.
(a) By replacing we obtain

(b) more information is required to solve this point. Please complete the information.
HOPE THIS HELPS!