Answer:
Explanation:
If we let our reference frame travel at 30 m/s with the constant speed car, The accelerating car increases its velocity by 10 m/s in 3 seconds.
The average velocity of the accelerating car is (0 + 10) / 2 = 5 m/s
It will advance its position 5 m/s(3 s) = 15 m in the accelerating period.
It takes 5 + 3 = 8 m for the two cars to become side by side.
It would take another 5 + 3 = 8 m for the accelerating car to leave a gap of 3 m between.
The car requires 8 + 8 = 16 m to pass the other safely but the acceleration period only gets him to 15 m.
So despite your saying this is not a YES / NO question, the answer is NO the acceleration is too low or not long enough to meet the required clearances.
Input needed is 10000 J/s / 0.30 = 333333 = J/s
three hours requires 333333(3)(3600) = 360 MJ of energy
360 MJ / 34 MJ/liter = 10.6 liters.
No. The companion is wrong.
You are shivering because, since it's cold outside, your body is becoming incapable of maintaining the the same temperature outside ad well as inside.
So, in order to compensate, your body uses mechanism of shivering in order to produce more heat by constricting the blood flow in vessels.
Therefore, you shiver from cold.
Answer:

Explanation:
Represent the car's position as a function
"head start"


"cathching up means" that 

T is in seconds (s)
<span>2pi is dimensionless </span>
<span>L is in meters (m) </span>
<span>g is in meters per second squared (m/s^2) </span>
<span>so you can write the equation for the period of the simple pendulum in its units... </span>
<span>s=sqrt(m/(m/s^2)) </span>
<span>simplify</span>
<span>s=sqrt(m*s^2*1/m) cancelling the m's </span>
<span>s=sqrt(s^2) </span>
<span>s=s </span>
<span>therefore the dimensions on the left side of the equation are equal to the dimensions on the right side of the equation.</span>