The momentum of a 5kg object that has a velocity of 1.2m/s is 6.0kgm/s.
<h3> MOMENTUM:</h3>
Momentum of a substance is the product of its mass and velocity. That is;
Momentum (p) = mass (m) × velocity (v)
According to this question, an object has a mass of 5kg and velocity of 1.2m/s. The momentum is calculated thus:
Momentum = 5kg × 1.2m/s
Momentum = 6kgm/s.
Therefore, the momentum of a 5kg object that has a velocity of 1.2m/s is 6.0kgm/s.
Learn more about momentum at: brainly.com/question/250648?referrer=searchResults
8.16m is the required height, a 5kg stone need to be raised.
One sort of potential energy is gravitational potential energy, which is equal to the product of the object's mass (m), the gravitational acceleration (g), and the object's height (h) as measured in relation to the ground's surface (the body).
We obtain the formula by considering the work done in raising a mass m through a height h.
Work in elevating mass m through height h is equal to force times distance.
The force must be greater than the mass m's weight, hence F = mg.
Work done = mgh = gravitational potential energy
Energy = Mass of the object × gravitational acceleration × height.
Mass of the stone = 5kg
Equating ;
∴ 400 J = 5 kg × 9.8 m/s² × height
Height = 8.16 m
Therefore, 8.16m is the required height.
Learn more about energy here:
brainly.com/question/1242059
#SPJ1
I think it’s C b/c it works for me
Los Angeles lies on the Pacific plate, San Francisco lies on the North American plate, and the meeting point of the two cities is mathematically given as
T = 120 x 105 years
<h3>What is the meeting point of the two plates?</h3>
Generally, the equation for Distance is mathematically given as
D = Rate x Time
Therefore
T = D/R
T = (600 x 105) / 5
T = 120 x 105 years
In conclusion, the meeting point of the two plates will be
T = 120 x 105 years
Read more about Arithmetic
brainly.com/question/22568180
#SPJ1
From the information given,
diameter of ornament = 8
radius = diameter/2 = 8/2
radius of curvature, r = 4
Recall,
focal length, f = radius of curvature/2 = 4/2
f = 2
Recall,
magnification = image d