Answer:
hey love! what is the question??
Answer: must have THE SAME number of atoms for each element
Explanation: Chemical equations must be balanced -- they must have the same number of atoms of each element on both sides of the equation. As a result, the mass of the reactants must be equal to the mass of the products of the reaction.
Answer:
The options <u>(A) -</u>The rate law for a given reaction can be determined from a knowledge of the rate-determining step in that reaction's mechanism. and <u>(C) </u>-The rate laws of bimolecular elementary reactions are second order overall ,<u>is true.</u>
Explanation:
(A) -The rate law can only be calculated from the reaction's slowest or rate-determining phase, according to the first sentence.
(B) -The second statement is not entirely right, since we cannot evaluate an accurate rate law by simply looking at the net equation. It must be decided by experimentation.
(C) -Since there are two reactants, the third statement is correct: most bimolecular reactions are second order overall.
(D)-The fourth argument is incorrect. We must track the rates of and elementary phase that is following the reaction in order to determine the rate.
<u>Therefore , the first and third statement is true.</u>
Answer:
The new temperature of the water bath 32.0°C.
Explanation:
Mass of water in water bath ,m= 8.10 kg = 8100 g ( 1kg = 1000g)
Initial temperature of the water = 
Final temperature of the water = 
Specific heat capacity of water under these conditions = c = 4.18 J/gK
Amount of energy lost by water = -Q = -69.0 kJ = -69.0 × 1000 J
( 1kJ=1000 J)




The new temperature of the water bath 32.0°C.