Answer:
a)
, b) 
Explanation:
a) The system ice cube-spring is modelled by means of the Principle of Energy Conservation. Let assume that height at the bottom is zero:





b) The distance travelled by the ice cube is:


Sample Response: How can magnetic and electric fields be demonstrated?
Answer:
12°F
Explanation:
Calculation for how much subcooling is there in the condenser
Since the CONDENSING TEMPERATURE for 417.4 psig discharge pressure is 120 degrees (120°) which means that the amount of subcooling that is there in the condenser will be calculated using this formula
Amount of Condenser subcooling= Condensing Temperature discharge pressure -Condenser outlet temperature
Let plug in the formula
Amount of Condenser subcooling=120°-108f
Amount of Condenser subcooling=12°F
Therefore the amount of subcooling that is there in the condenser will be 12°F
Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.
Answer:
1.98 atm
Explanation:
Given that:
Temperature = 28.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28 + 273.15) K = 301.15 K
n = 1
V = 0.500 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L atm/ K mol
Applying the equation as:
P × 0.500 L = 1 ×0.0821 L atm/ K mol × 301.15 K
⇒P (ideal) = 49.45 atm
Using Van der Waal's equation
R = 0.0821 L atm/ K mol
Where, a and b are constants.
For Ar, given that:
So, a = 1.345 atm L² / mol²
b = 0.03219 L / mol
So,


⇒P (real) = 47.47 atm
Difference in pressure = 49.45 atm - 47.47 atm = 1.98 atm