Use the ideal gas law:
PV = nRT
so, T = PV / nR
n=0.5
V= 120 dm^3 = 120 L (1 dm^3 = 1 L)
R = 1/12
P = 15,000 Pa = 0.147 atm (1 pa = 9.86 10^{-6} )
Put the values:
T = PV / nR
T = (0.147) (120) / (0.5) (1/12)
T= 426 K
Following reaction is involved in present system:
2KMnO4 + 5H2O2 + 3H2SO4 → 2MnSO4 + K2SO4 + 5O2 + 8H2O
From the above balance reaction, it can be seen that 2 moles of KMnO4 is consumed for every 5 moles of H2O2.
Now, percent by mass of hydrogen peroxide in the original solution can be estimated as follows:
percent by mass =

∴percent by mass =

= 4 %
The percent by mass of calcium hydroxide in the solution : 15.41%
<h3>Further explanation</h3>
The concentration of a substance can be expressed in several quantities such as moles, percent (%) weight/volume,), molarity, molality, parts per million (ppm) or mole fraction. The concentration shows the amount of solute in a unit of the amount of solvent.
Mass of solute (Ca(OH₂-Calcium hydroxide) : 28.5
Mass of solution = 185 g

When a nucleus emits a positron, its atomic number is lowered by one but its mass number stays the same.
Answer:
Option D, Concentration of NO2 decomposes after 4.00 s = 0.77 mol
Explanation:

Time (t) = 4.00\;s
Initial concentration of NO2 = 1.33 M
Integrated law for second order reaction:
![\frac{1}{[A]}=\frac{1}{[A]_0} =kt](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3D%5Cfrac%7B1%7D%7B%5BA%5D_0%7D%20%3Dkt)
Where, [A] = Concentration after time, t
[A]0 = Intitial concentration, k = rate constant, t = time
On substituting values in the above
![\frac{1}{[A]}=\frac{1}{1.33} =0.255 \times 4.00](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3D%5Cfrac%7B1%7D%7B1.33%7D%20%3D0.255%20%5Ctimes%204.00)
![\frac{1}{[A]} =1.772](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%20%3D1.772)
[A] = 0.5644 M
Concentration of NO2 decomposes after 4.00 s = 1.33 - 0.5644 = 0.7656 M
No. of mole = Molarity * volume
= 0.7656 * 1
= 0.7656 mol 0r 0.77 mol