Answer:
The child will take 5.952 seconds to travel from the top of the hill to the bottom.
Explanation:
Given that the child accelerates uniformly and that both initial (
) and final speeds (
), measured in meters per second, and acceleration (
), measured in meters per square second, are known, we proceed to use the following kinematic equation to determine the time taken to travel from the top of the hill to the bottom (
), measured in seconds, is:
(1)
If we know that
,
and
, then the time taken is:

The child will take 5.952 seconds to travel from the top of the hill to the bottom.
Complete Question
The complete question is shown on the first uploaded image
Answer:
a it is always zero
b 0
c 
Explanation:ss
Here the net charge is on the outer surface of the conductor thus this means that the net charge inside the conductor is zero
Generally the charge density of a conductor is dependent on the charge per unit area which implies that the charge density is dependent on the net charge so this means that the charge density inside the conductor is zero
Generally the direction of electric field this from the positive charge to the negative charge so from the question we can deduce that the negative charge is located on the surface of the conductor
So We can mathematically define the charge density on the surface of the electric field as
∮
Where E is the electric field
change in unit area
is the negative charge
is the permittivity of free space
So



Where
is the charge density
Answer:
Explanation:
If i'm not wrong and late it might be F