Answer:
C = 4,174 10³ V / m^{3/4}
, E = 7.19 10² / ∛x, E = 1.5 10³ N/C
Explanation:
For this exercise we can calculate the value of the constant and the electric field produced,
Let's start by calculating the value of the constant C
V = C
C = V / x^{4/3}
C = 220 / (11 10⁻²)^{4/3}
C = 4,174 10³ V / m^{3/4}
To calculate the electric field we use the expression
V = E dx
E = dx / V
E = ∫ dx / C x^{4/3}
E = 1 / C x^{-1/3} / (- 1/3)
E = 1 / C (-3 / x^{1/3})
We evaluate from the lower limit x = 0 E = E₀ = 0 to the upper limit x = x, E = E
E = 3 / C (0- (-1 / x^{1/3}))
E = 3 / 4,174 10³ (1 / x^{1/3})
E = 7.19 10² / ∛x
for x = 0.110 cm
E = 7.19 10² /∛0.11
E = 1.5 10³ N/C
Force applied causes
deformation in the object. It changes the relative positions of
constituent particles in the crystal lattice.
As soon as that happens, the interatomic or intermolecular forces come
into play and they, tend to restore the solid back to it's original
shape.
This restoring force per unit area is called Stress . When external forces are removed, the internal forces tend to restore the solid back.
This property is called Elasticity .
However, no material is perfectly elastic and what happens is that, the body is not able to restore itself completely.
Answer:
2156J
Explanation:
Given parameters:
Height of lift = 10m
Mass = 22kg
Unknown:
Work done by the machine = ?
Solution:
Work done is the force applied to move a body through a certain distance.
So;
Work done = Force x distance
Here;
Work done = mass x acceleration due to gravity x height
Work done = 22 x 9.8 x 10 = 2156J