<u>Answer:</u> The correct option is d) 460 kJ
<u>Explanation:</u>
We are given:
Content of fat in energy drink = 2.0 g
Content of protein in energy drink = 6.0 g
Content of carbohydrate in energy drink = 16.3 g
Also,
The fuel value of fat = 38 kJ/g
The fuel value of protein = 17 kJ/g
The fuel value of carbohydrate = 17 kJ/g
So, the fuel value of the energy drink will be:
Total fuel value = 
Total fuel value = ![[76+102+277]=460kJ](https://tex.z-dn.net/?f=%5B76%2B102%2B277%5D%3D460kJ)
Hence, the correct option is d) 460 kJ
Answer:
Ag+(aq) + Cl-(aq) —> AgCl(s)
Explanation:
2AgNO3(aq) + CaCl2(aq) —>2AgCl(s) + Ca(NO3)2(aq)
The balanced net ionic equation for the reaction above can be obtained as follow:
AgNO3(aq) and CaCl2(aq) will dissociate in solution as follow:
AgNO3(aq) —> Ag+(aq) + NO3-(aq)
CaCl2(aq) —> Ca2+(aq) + 2Cl-(aq)
AgNO3(aq) + CaCl2(aq) –>
2Ag+(aq) + 2NO3-(aq) + Ca2+(aq) + 2Cl-(aq) —> 2AgCl(s) + Ca2+(aq) + 2NO3-(aq)
Cancel out the spectator ions i.e Ca2+(aq) and 2NO3- to obtain the net ionic equation.
2Ag+(aq) + 2Cl-(aq) —> 2AgCl(s)
Divide through by 2
Ag+(aq) + Cl-(aq) —> AgCl(s)
The, the net ionic equation is
Ag+(aq) + Cl-(aq) —> AgCl(s)
Since the addition of the H2O in the last step of hydroboration is anti-Markovnikov, the starting material is 1-pentyne.
The addition of H2 to C5H8 yields an alkene when a Lindlar catalyst is used. Recall that the Lindlar catalysts poisons the process so that the addition do not go on to produce an alkane.
When hydroboration is carried out on the alkene, we are told that a primary alcohol was obtained. We must note that in the last step of hydroboration, water is added in an anti- Markovnikov manner to yield the primary alcohol. Hence, the starting material must be 1-pentyne as shown in the image attached.
Learn more: brainly.com/question/2510654
<u>Answer:</u>
The correct answer option is a) collisions between the particles and surrounding molecules.
<u>Explanation:</u>
The collisions between the particles and surrounding molecules causes the Brownian motion of particles in a colloid.
Brownian motion is the irregular movement of the microscopic particles in a fluid which bombard into each other.
It basically is the result of the molecules of a dispersion medium colliding with the dispersed particles of the phase.