MAl₂(SO₄)₃·xH₂O:
(mAl×2) + (mS×3) + (mO×12) + (mH₂O×x)
(27×2)+(32×3)+(16×12)+(x×18) = 342 + 18x [g]
mAl₂: 27×2 = 54 [g]
54g ---------- 13,63%
342+18x ---- 100%
0,1363(342+18x) = 54
46,6146 + 2,4534x = 54
2,4534x = 7,3854
x ≈ 3
>>> Al₂(SO₄)₃·3H₂O <<<<
:)
THE KINETIC MOLECULAR THEORY STATES THAT ALL PARTICLES OF AN IDEAL GAS ARE IN CONSTANT MOTION AND EXHIBITS PERFECT ELASTIC COLLISIONS.
Explanation:
An ideal gas is an imaginary gas whose behavior perfectly fits all the assumptions of the kinetic-molecular theory. In reality, gases are not ideal, but are very close to being so under most everyday conditions.
The kinetic-molecular theory as it applies to gases has five basic assumptions.
- Gases consist of very large numbers of tiny spherical particles that are far apart from one another compared to their size.
- Gas particles are in constant rapid motion in random directions.
- Collisions between gas particles and between particles and the container walls are elastic collisions.
- The average kinetic energy of gas particles is dependent upon the temperature of the gas.
- There are no forces of attraction or repulsion between gas particles.
The lithosphere makes up the layer of the earth.
Answer:
Ay high concentration of reactants
Explanation:
To slow down a reaction, you need to do the opposite. Factors that can affect rates of reactions include surface area, temperature, concentration, and the presence of catalysts and inhibitors. ... Concentration - another way to increase the rate of a chemical reaction is to increase the concentration of the reactants.
Answer:
Have no valence electrons because they are stable.
Thank you.
BY GERALD GREAT