Answer:
B)
Explanation:
This should be the correct answer, lmk if it's not
Q: What is the change of entropy for 3.0 kg of water when the 3.0 kg of water is changed to ice at 0 °C? (Lf = 3.34 x 105 J/kg)
Answer:
-3670.33 J/K
Explanation:
Entropy: This can be defined as the degree of randomness or disorderliness of a substance. The S.I unit of Entropy is J/K.
Mathematically, change of Entropy can be expressed as,
ΔS = ΔH/T ....................................... Equation 1
Where ΔS = Change of entropy, ΔH = heat change, T = temperature.
ΔH = -(Lf×m).................................... Equation 2
Note: ΔH is negative because heat is lost.
Where Lf = latent heat of ice = 3.34×10⁵ J/kg, m = 3.0 kg, m = mass of water = 3.0 kg
Substitute into equation
ΔH = -(3.34×10⁵×3.0)
ΔH = - 1002000 J.
But T = 0 °C = (0+273) K = 273 K.
Substitute into equation 1
ΔS = -1002000/273
ΔS = -3670.33 J/K
Note: The negative value of ΔS shows that the entropy of water decreases when it is changed to ice at 0 °C
The extra conversion of concentration of reactant and product should be zero in order to attaining equlibrium state.
<h3>What is equilibrium?</h3>
Chemical equilibrium refers to the state in which both the reactants and products are present in equal concentrations or amount. In equlibrium, same amount of reactant is converted into product and product into reactant.
So we can conclude that the extra conversion of concentration of reactant and product should be zero in order to attaining equlibrium state.
Learn more about equilibrium here: brainly.com/question/517289
Answer:
ion
However atoms may gain or lose electrons in ordinary chemical reactions. If an atom has the same number of electrons as protons, it is a neutral atom. If it has a net charge, (more or less electrons than protons) it is an ion. If it has more electrons than protons it has a net negative charge and is known as an anion.
Explanation: