So, we have:
- molecular weight
- shape
- temperature
- kinetic energy
- mass
- density
Let's rule out the different options.
- molecular weight: Say you have a molecule of H2O. H2O can be a solid, liquid, or gas, but its molecular weight never changes throughout (It's still the same molecule, no matter what phase it is in). We can rule this out.
- shape: Let's pretend we have three identical closed containers, and we fill each one halfway with water, blocks of ice cubes, and water vapor. In the container with water, you will see that the water takes the shape of the container, but doesn't fill the entire container up. The ice cubes will stay ice cubes, assuming they don't melt, so they don't take the shape of the container. The vapor will fill up the entire container. Since all three are different, I would say yes, this could be a distinguishable feature.
- temperature: In general, I would say no, because every element/molecule has different boiling points and different vaporization points. So if you have a liquid at 5°C, you could also have a different element in solid form at 5°C. But if you're comparing a single type of molecule, it would have a boiling point and a vaporization point, so you <em>would</em> be able to tell between them.
- kinetic energy: Kinetic energy refers to how much movement there is in respect to each molecule. In solids, the molecules are packed tightly together and can't move very much, so they have lower kinetic energy. In liquids, they are less packed, but still restricted. And in gases, they can fly freely, so they will have much more kinetic energy than liquids or solids. This one's a yes.
- mass: No matter what form, there are still the same amount of molecules, and each molecule has the same mass as before. It won't change.
- density: Since the molecules are more spread out in gases, it will be less dense. Liquids will be more dense, and solids will have the greatest density. So, yes.
Conclusion: shape, kinetic energy, density, (and temperature if it's talking about a single type of molecule)
Answer:
The International System of Units (SI) is originated in France by frenches and originally was called a metric system of measurements. It provides definitions of various units of measurement such as weight, distance, electric current, temperature, and others which is widely accepted in the different fields of science and technology.
It is the system that is extended and derived from the french metric system of measurement is accepted in 1960 by convention 44 nation of the world to use particular unit of measurement worldwide to avoid confusion.
Atomic elements consist of a nucleus that contains protons and neutrons. Protons carry a positive charge whilst neutrons are electrically neutral. In light elements with an atomic number less than 20, the neutron to proton ratio is generally equal to 1:1. This changes for heavier elements since the Coulomb interaction between many protons gets stronger and demands more neutrons for the nucleus to remain stable.
Earthquakes along the San Andreas fault in California.
<u>Explanation</u>:
- When the two plates collide with each other, earthquakes occur. The contact between them makes this earthquake possible. The contact forces are responsible for the earthquakes as there is contact between two plates.
- The gravitational force is a force that is responsible for elevated tides happening on the east coast or the Jupiter's moons to remain in orbit. But this is not a contact force as there is no contact between them
- Moreover, Without any contact, the magnetic force is a non-contact as it attracts the pins from a distance.
<span>12810 atomic mass units
Since a monomer is the basic building block of a polymer, we just need to multiply the mass of the monomers by the number of monomers used. So
105 atomic mass units * 122 = 12810 atomic mass units</span>