Firework exploding. Thank you :)
Answer:
The kind of ionic compound formed is MX2.
Explanation:
Element X electron configuration is represented as [core] ns2np5. The group in the periodic table this element belong to is group 7A. The element group is called the halogen family. Element X cannot be stated specifically, because the number is represented with n. Element X will behave as an anions when it react with a metal(cations). Element X has a charge of -1. The element X will gain electron when it bond with a metal. Element X is a non metal . Elements in this group are fluorine, chlorine, bromine, iodine , astatine, and tennessine . The element X have 7 valency electrons.
Element M electronic configuration is represented as [core]ns2. The group in the periodic table this element belong to is group 2A . The element group is called the alkaline earth metals family . Element M will behave as a cation when it bond with a non metal. Element M is a metal , therefore it will likely lose electron to form cations during bonding . The charge of element M is 2+. Element M is positively charged. Elements that belong to this group includes beryllium, magnesium, calcium, strontium, barium and radium. Element M has 2 valency electrons.
The reaction between this 2 ions will likely form an ionic compound . The element M is the cations while the element X is the anions. The element M will lose 2 electron while 2 atoms of element X will gain 2 electrons.Element M will lose 2 electron to attain a stable configuration while 2 atoms of element X will gain a single electron each to attain a stable configuration.
M²+ and F- . This will form MX2 when you cross multiply the charge. The kind of ionic compound formed is MX2.
H₂O would be the limiting reactant.
Balanced chemical equation:
6CO₂ + 6H₂O + light equation → C₆H₁₂O₆ + 6O₂
The amount of product that can be created is constrained by the reactant that is consumed first in a chemical reaction, commonly referred to as the limiting reactant (or limiting reagent).
Given
No. of moles of CO₂ = 18.6
Mass of H₂O = 2.38 × 10² g = 238g
No. of moles of H₂O = Given mass/ Molar mass
= 238 / 18 = 13.22 moles
Moles of H₂O = 13.22
According to the balanced chemical equation
6 moles of CO₂ react with 6 moles of H₂O
So the reactant that has less number of moles will be consumed first.
As the No. of moles of H₂O < No. of moles of CO₂
So, H₂O is the limiting reactant with 13.22 moles.
Hence, H₂O would be the limiting reactant.
Learn more about limiting reactant here brainly.com/question/14222359
#SPJ1
Answer:
<h2>0.05 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>0.05 moles</h3>
Hope this helps you