Answer:
The answer to your question is: 6.55 x 10 ²³ atoms of Br
Explanation:
CH2Br2 = 37.9 g
MW CH2Br2 = (12 x 1) + (2 x 1) + (80 x 2) = 174 g
174 g of CH2Br2 ------------------ 160 g of Br2
37.9 g of CH2Br2 --------------- x
x = 37.9 x 160/174 = 34.85 g of Br
1 mol of Br ----------------- 160 g Br2
x ---------------- 174 g Be2
x = 174 x 1 /160 = 1.088 mol of Br2
1 mol of Br ----------------- 6.023 x 10 ²³ atoms
1.088 mol of Br ------------- x
x = 1.088 x 6.023 x 10 ²³ / 1 = 6.55 x 10 ²³ atoms
An exponential decay law has the general form: A = Ao * e ^ (-kt) =>
A/Ao = e^(-kt)
Half-life time => A/Ao = 1/2, and t = 4.5 min
=> 1/2 = e^(-k*4.5) => ln(2) = 4.5k => k = ln(2) / 4.5 ≈ 0.154
Now replace the value of k, Ao = 28g and t = 7 min to find how many grams of Thalium-207 will remain:
A = Ao e ^ (-kt) = 28 g * e ^( -0.154 * 7) = 9.5 g
Answer 9.5 g.