Answer:
A. The mechanical energy transforms to thermal energy as the pendulum slows and eventually stops moving.
Explanation:
took the quiz on edge
Answer:
1kg
Explanation:
this box is the smallest and weighs the least. Hope this helps :]
Answer:
b) q large and m small
Explanation:
q is large and m is small
We'll express it as :
q > m
As we know the formula:
F = Eq
And we also know that :
F = Bqv
F = 
Bqv = 
or Eq = 
Assume that you want a velocity selector that will allow particles of velocity v⃗ to pass straight through without deflection while also providing the best possible velocity resolution. You set the electric and magnetic fields to select the velocity v⃗ . To obtain the best possible velocity resolution (the narrowest distribution of velocities of the transmitted particles) you would want to use particles with q large and m small.
Answer:
a) P = 807.85 N, b) P = 392.15 N, c) P = 444.12 N
Explanation:
For this exercise, let's use Newton's second law, let's set a reference frame with the x-axis parallel to the plane and the direction rising as positive, and the y-axis perpendicular to the plane.
Let's use trigonometry to break down the weight
sin θ = Wₓ / W
cos θ = W_y / W
Wₓ = W sin θ
W_y = W cos θ
Wₓ = 1200 sin 30 = 600 N
W_y = 1200 cos 30 = 1039.23 N
Y axis
N- W_y = 0
N = W_y = 1039.23 N
Remember that the friction force always opposes the movement
a) in this case, the system will begin to move upwards, which is why friction is static
P -Wₓ -fr = 0
P = Wₓ + fr
as the system is moving the friction coefficient is dynamic
fr = μ N
fr = 0.20 1039.23
fr = 207.85 N
we substitute
P = 600+ 207.85
P = 807.85 N
b) to avoid downward movement implies that the system is stopped, therefore the friction coefficient is static
P + fr -Wx = 0
fr = μ N
fr = 0.20 1039.23
fr = 207.85 N
we substitute
P = Wₓ -fr
P = 600 - 207,846
P = 392.15 N
c) as the movement is continuous, the friction coefficient is dynamic
P - Wₓ + fr = 0
P = Wₓ - fr
fr = 0.15 1039.23
fr = 155.88 N
P = 600 - 155.88
P = 444.12 N
Answer:
Spring constant of the spring will be equal to 9.255 N /m
Explanation:
We have given mass m = 0.683 kg
Time taken to complete one oscillation is given T = 1.41 sec
We have to find the spring constant of the spring
From spring mass system time period is equal to
, here m is mass and K is spring constant
So 

Squaring both side


So spring constant of the spring will be equal to 9.255 N /m