This statement is true. The point located at the geometric center of an object is indeed called the object's center of gravity. Center of gravity is the average of the weight of a resultant of the parallel forces, including all the particles that is passing through its body.
Setting reference frame so that the x axis is along the incline and y is perpendicular to the incline
<span>X: mgsin65 - F = mAx </span>
<span>Y: N - mgcos65 = 0 (N is the normal force on the incline) N = mgcos65 (which we knew) </span>
<span>Moment about center of mass: </span>
<span>Fr = Iα </span>
<span>Now Ax = rα </span>
<span>and F = umgcos65 </span>
<span>mgsin65 - umgcos65 = mrα -------------> gsin65 - ugcos65 = rα (this is the X equation m's cancel) </span>
<span>umgcos65(r) = 0.4mr^2(α) -----------> ugcos65(r) = 0.4r(rα) (This is the moment equation m's cancel) </span>
<span>ugcos65(r) = 0.4r(gsin65 - ugcos65) ( moment equation subbing in X equation for rα) </span>
<span>ugcos65 = 0.4(gsin65 - ugcos65) </span>
<span>1.4ugcos65 = 0.4gsin65 </span>
<span>1.4ucos65 = 0.4sin65 </span>
<span>u = 0.4sin65/1.4cos65 </span>
<span>u = 0.613 </span>
Permanent magnet. An induced magnet would be created when a piece of iron (for example) is in contact with a magnet. Temporary magnets would be something like an electromagnet. Bar magnets are permanently magnetic unless we heat them or hammer them to cause their domains to loose alignment.
Answer:
M. Magnetism is a property of individual atoms.
Explanation:
when a magnet is broken into pieces the new pieces behave like the original magnet this observation shows that magnetism is the property of individual atoms.