Answer:
a) pH = 4.68 (more effective)
b) pH =4.44.
Explanation:
The pH of buffer solution is obtained by Henderson Hassalbalch's equation.
The equation is:
![pH =pKa +log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%20%3DpKa%20%2Blog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
a) pKa of acetic acid = 4.74
[salt] = [CH₃COONa] = 1.4 M
[acid] = [CH₃COOH] = 1.6 M

This is more effective as there is very less difference in the concentration of salt and acid.
b) pKa of acetic acid = 4.74
[salt] = [CH₃COONa] = 0.1 M
[acid] = [CH₃COOH] = 0.2 M

Answer: (2) decreasing the concentration of HCl(aq) to 0.1 M
Explanation: Rate of a reaction depends on following factors:
1. Size of the solute particles: If the reactant molecules are present in smaller size, surface of particles and decreasing the size increases the surface area of the solute particles. Hence, increasing the rate of a reaction.
2. Reactant concentration: The rate of the reaction is directly proportional to the concentration of reactants.
3. Temperature: Increasing the temperature increases the energy of the molecules and thus more molecules can react to give products and rate increases.
(1) Increasing the initial temperature to 25°C will increase the reaction rate.
(2) Decreasing the concentration of HCl(aq) to 0.1 M will decrease the reaction rate due to lesser concentration.
(3) Using 1.2 g of powdered Mg will increase the reaction rate due to large surface area.
(4) Using 2.4 g of Mg ribbon will increase the reaction rate due to high concentration of reactants.
Answer:
pH = -log₁₀ [H⁺]
Explanation:
pH is a value in chemistry used in to measure solution trying to determine each quality, purity, risks for health of some products, etc.
As you write in the question, [H⁺] = 10^(-pH)
Using logarithm law (log (m^(p) = p log(m):
log₁₀ [H⁺] = -pH
And
<h3>pH = -log₁₀ [H⁺]</h3>
Technically, the answer is iron. Oxygen has a melting point way below zero (-219 degrees celsius), ice becomes water AT room temperature and bromine is already a liquid at room temperature. So, iron has a melting point greater than room temperature due to the fact that metals are made up of giant structures of atoms in a regular arrangement, and there are strong forces of electrostatic attraction between positive metal ions and negative electrons, meaning that a lot of heat energy is required to break the bonds, i.e. a very high melting point, approx. 1500 degrees celsius. Hope this helps.
Answer:
<h3>The answer is 7.85 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

volume = final volume of water - initial volume of water
volume = 13.91 - 12 = 1.91 mL
We have

We have the final answer as
<h3>7.85 g/mL</h3>
Hope this helps you