Answer:
The parabola is translated down 2 units.
Step-by-step explanation:
You have the parabola f(x) = 2x² – 5x + 3
To change this parabola to f(x) = 2x² - 5x + 1, you must have performed the following calculation:
f(x) = 2x² – 5x + 3 -2= 2x² - 5x + 1 <u><em>Expresion A</em></u>
The algebraic expression of the parabola that results from translating the parabola f (x) = ax² horizontally and vertically is g (x) = a(x - p)² + q, translating in the same way as the function.
- If p> 0 and q> 0, the parabola shifts p units to the right and q units up.
- If p> 0 and q <0, the parabola shifts p units to the right and q units down.
- If p <0 and q> 0, the parabola shifts p units to the left and q units up.
- If p <0 and q <0, the parabola shifts p units to the left and q units down.
In the expression A it can be observed then that q = -2 and is less than 0. So the displacement is down 2 units.
This can also be seen graphically, in the attached image, where the red parabola corresponds to the function f(x) = 2x² – 5x + 3 and the blue one to the parabola f(x) = 2x² – 5x + 1.
In conclusion, <u><em>the parabola is translated down 2 units.</em></u>
Answer:
1,516 pounds
Step-by-step explanation:
Gorilla A weighed = 559 pounds Gorilla B weighed = 827 pounds Gorilla C weighed = 130 pounds
Total weight of the gorillas = gorilla A + gorilla B + gorilla C
= 559 pounds + 827 pounds + 130 pounds
= 1,516 pounds
Total weight of the gorillas = 1,516 pounds
<h3>Answer:</h3><h3>Exact volume =
32pi</h3><h3>Approximate volume =
100.48</h3>
The approximate volume only applies when pi = 3.14
Use either answer, but not both of course.
===============================================
Work Shown:
V = volume of cylinder
V = pi*r^2*h
V = pi*2^2*8
V = pi*32
V = 32pi .... exact volume in terms of pi
V = 32*3.14
V = 100.48 .... approximate volume when we use pi = 3.14
The discontinuity are the point wherein the function is not defined.
The zeros are the points wherein f(x)=0.
Computing the discontinuity points:
Set

then the discontinuity point is at

.
Comptine the zeroes:
Set

Compute the discriminant:

Then with quadratic formula we get the solutions:

The two zeros are