1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad1618 [11]
3 years ago
10

While excavating the tomb of Tutankhamen (d. 1325 BC), archeologists found a sling made of linen. The sling could hold a stone i

n a pouch, which could then be whirled in a horizontal circle. The stone could then be thrown for hunting or used in battle. Imagine the sling held a 0.10-kg stone; and it was whirled at a radius of 1.5 m with an angular speed of 2.0 rev/s. What was the angular momentum of the stone under these circumstances
Physics
1 answer:
AleksAgata [21]3 years ago
4 0

Answer:

L = 2.83 J.s

Explanation:

The formula for the angular momentum of the stone is given as follows:

L = mvr

where,

L = angular momentum of the stone  = ?

m = mass of the stone = 0.1 kg

v = linear velocity of the stone = rω

r = radius of circular path = 1.5 m

ω = angular speed of the stone = (2 rev/s)(2π rad/1 rev) = 4π rad/s

Therefore,

L = mvr = m(rω)r

L = mr²ω

using values, we get:

L = (0.1 kg)(1.5 m)²(4π rad/s)

<u>L = 2.83 J.s</u>

You might be interested in
Force F acts between a pair of charges, q1 and q2, separated by a distance d. For each of the statements, use the drop-down menu
lora16 [44]

The initial force between the two charges is given by:

F=k \frac{q_1 q_2}{d^2}

where k is the Coulomb's constant, q1 and q2 the two charges, d their separation. Let's analyze now the other situations:

1. F

In this case, q1 is halved, q2 is doubled, but the distance between the charges remains d.

So, we have:

q_1' = \frac{q_1}{2}\\q_2' = 2 q_2\\d' = d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{(\frac{q_1}{2})(2q_2)}{d^2}=k \frac{q_1 q_2}{d^2}=F

So the force has not changed.

2. F/4

In this case, q1 and q2 are unchanged. The distance between the charges is doubled to 2d.

So, we have:

q_1' = q_1\\q_2' = q_2\\d' = 2d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{q_1 q_2)}{(2d)^2}=\frac{1}{4} k \frac{q_1 q_2}{d^2}=\frac{F}{4}

So the force has decreased by a factor 4.

3. 6F

In this case, q1 is doubled and q2 is tripled. The distance between the charges remains d.

So, we have:

q_1' = 2 q_1\\q_2' = 3 q_2\\d' = d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{(2 q_1)(3 q_2)}{d^2}=6 k \frac{q_1 q_2}{d^2}=6F

So the force has increased by a factor 6.

8 0
3 years ago
Read 2 more answers
What is the purpose of heat index
Nookie1986 [14]
<span>It tells how hot it really feels when the relative humidity is factored in with the actual air temperature.
hope this helps</span>
7 0
3 years ago
Read 2 more answers
At each corner of a square of side l there are point charges of magnitude Q, 2Q, 3Q, and 4Q.What is the magnitude and direction
lbvjy [14]

Answer:

F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}]

|F_T|=2\sqrt{34}k\frac{Q^2}{L}

\theta=tan^{-1}(\frac{5}{3})=59.03\°

Explanation:

I attached an image below with the scheme of the system:

The total force on the charge 2Q is the sum of the contribution of the forces between 2Q and the other charges:

F_T=F_Q+F_{3Q}+F_{4Q}\\\\F_T=k\frac{(Q)(2Q)}{R_1}\hat{i}+k\frac{(3Q)(2Q)}{R_2}\hat{j}+k\frac{(4Q)(2Q)}{R_3}[cos\theta \hat{i}+sin\theta \hat{j}]

the distances R1, R2 and R3, for a square arrangement is:

R1 = L

R2 = L

R3 = (√2)L

θ = 45°

F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[cos(45\°)\hat{i}+sin(45\°)\hat{j}]\\\\F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[\frac{\sqrt{2}}{2}\hat{i}+\frac{\sqrt{2}}{2}\hat{j}]\\\\F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}]

and the magnitude is:

|F_T|=2k\frac{Q^2}{L}\sqrt{3^2+5^2}=2\sqrt{34}k\frac{Q^2}{L}

the direction is:

\theta=tan^{-1}(\frac{5}{3})=59.03\°

4 0
3 years ago
A pool ball moving 1.83 m/s strikes an identical ball at rest. Afterward, the first ball moves 1.15 m/s at a 23.3° angle. What i
Oksi-84 [34.3K]

Answer:

v_{1fy} = - 0.4549 m / s

Explanation:

6 0
3 years ago
By calculating its wavelength (in nm), show that the second line in the Lyman series is UV radiation.
Rashid [163]

Answer:

 λ = 102.78  nm

This radiation is in the UV range,

Explanation:

Bohr's atomic model for the hydrogen atom states that the energy is

           E = - 13.606 / n²

where 13.606 eV   is the ground state energy and n is an integer

an atom transition is the jump of an electron from an initial state to a final state of lesser emergy

            ΔE = 13.606 (1 / n_{f}^{2} - 1 / n_{i}^{2})

the so-called Lyman series occurs when the final state nf = 1, so the second line occurs when ni = 3, let's calculate the energy of the emitted photon

            DE = 13.606 (1/1 - 1/3²)

            DE = 12.094 eV

let's reduce the energy to the SI system

            DE = 12.094 eV (1.6 10⁻¹⁹ J / 1 ev) = 10.35 10⁻¹⁹ J

let's find the wavelength is this energy, let's use Planck's equation to find the frequency

            E = h f

             f = E / h

            f = 19.35 10⁻¹⁹ / 6.63 10⁻³⁴

            f = 2.9186 10¹⁵ Hz

now we can look up the wavelength

           c = λ f

           λ = c / f

           λ = 3 10⁸ / 2.9186 10¹⁵

           λ = 1.0278  10⁻⁷ m

let's reduce to nm

            λ = 102.78  nm

This radiation is in the UV range, which occurs for wavelengths less than 400 nm.

5 0
3 years ago
Other questions:
  • Several paper clips dangle from the north pole of a magnet. The induced pole in the bottom of the lowermost paper clip is a
    14·1 answer
  • Water waves approach an underwater "shelf" where the velocity changes from 2.8 m/s to 2.1 m/s. If the incident wave crests make
    11·1 answer
  • Explain with method pls..
    15·1 answer
  • 2. A body starts with an initial velocity of 10 m s-1 and
    15·1 answer
  • Three forces act on an object. a 3 n force acts due east and a 8 n force acts due north. if the net force on the object is zero,
    14·1 answer
  • Exam
    5·2 answers
  • Riddle of the day<br><br> What gets wet while drying?
    11·2 answers
  • What is the correct answer?
    5·2 answers
  • How does the magnitude of the force depend on the magnitude (absolute value) of charge 1 and charge 2.
    7·1 answer
  • Anything that occupies space and has mass is called
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!