At 4 m/s?
How do the two kinetic energies compare to one another? QUADRUPLES !
#3 What is the kinetic energy of a 2,000 kg bus that is moving at 30 m/s?
Potential energy
Answer:
3.24×10⁸ J, or 324 MJ
Explanation:
"kWh" is a kilowatt-hour. It's the energy used by 1 kilowatt of power after one hour.
A kilowatt is a kilojoule per second.
90 kWh
= 90 kW × 1 hr
= 90 kJ/s × 1 hr
= 90 kJ/s × 3600 s
= 324,000 kJ
= 324,000,000 J
The energy is 3.24×10⁸ J, or 324 megajoules.
The quantity work has to do with a force causing a displacement. Work has nothing to do with the amount of time that this force acts to cause the displacement. Sometimes, the work is done very quickly and other times the work is done rather slowly. For example, a rock climber takes an abnormally long time to elevate her body up a few meters along the side of a cliff. On the other hand, a trail hiker (who selects the easier path up the mountain) might elevate her body a few meters in a short amount of time. The two people might do the same amount of work, yet the hiker does the work in considerably less time than the rock climber. The quantity that has to do with the rate at which a certain amount of work is done is known as the power. The hiker has a greater power rating than the rock climber.
Power is the rate at which work is done. It is the work/time ratio. Mathematically, it is computed using the following equation.
Power = Work / time
or
P = W / t
Force = work / dis
= 60/ 5
= 12 N
Work = (force) x (distance)
40,000 J = (20 N) x (distance)
Distance = (40,000 J) / (20 N)
= 2,000 meters
= 2 kilometers.
(20 N is not a huge force when it's being used to move a car.
It's only about 4.5 pounds.)