Answer:
Moreover, Boss says that even if Jupiter is proven to have a core, the planet still could have formed that core through disk instability. Enough dust could have collected and cemented together in the dense gas to form a core many times larger than the size of the Earth.
Explanation:
The same is true of most other objects in the solar system — except Jupiter. The gas giant is so big that it pulls the center of mass between it and the sun, also known as the barycenter, some 1.07 solar radii from the star's center — which is about 30,000 miles above the sun's surface.
69,911 km
69,911 kmJupiter/Radius
The amount of gravitational force between both objects will be the same.
The magnitude of the Earth's gravitational force exerted on the housekeeper is calculated by applying Newton's second law of motion;
F = mg
where;
<em>m </em><em>is the mass of the housekeeper</em>
<em>g </em><em>is acceleration due to gravity</em>
According to Newton's third law of motion, action and reaction are equal and opposite.
The force exerted on the housekeeper by the Earth is equal in magnitude to the force exerted on the Earth by the housekeeper.

The two forces are equal in magnitude but opposite in direction.
Thus, the correct option is " the amount of gravitational force between both objects will be the same"
<em>The</em><em> missing part</em><em> of the </em><em>question </em><em>is below:</em>
a. the Earth exerts the largest amount of gravitational force
b. the housekeeper exerts the largest amount of gravitational force
c. the amount of gravitational force between both objects will be the same
Learn more about Newton's third law of motion here: brainly.com/question/15507
Answer:
The right solution is "165.8 nm".
Explanation:
Given:
Index of refraction,
n = 1.81
Wavelength,
λ = 600 nm
We know that,
⇒ 
By putting the values, we get

