displ = velocity x time
25 x 3.2 = 75+5 km north.
Internal energy of the system changes by ΔE = 178 J.
Heat given to the system = Q = +658 J.
According to the first law of thermodynamics,
ΔE = Q + W
178 = 658 + W
∴ W = 178-658 = -480 J
Minus sign indicates that work is done by the system.
Answer:
47.4 m
Explanation:
When an object is thrown upward, it rises up, it reaches its maximum height, and then it goes down. The time at which it reaches its maximum height is half the total time of flight.
In this case, the time of flight is 6.22 s, so the time the ball takes to reach the maximum height is

Now we consider only the downward motion of the ball: it is a free fall motion, so we can find the vertical displacement by using the suvat equation

where
s is the vertical displacement
u = 0 is the initial velocity
t = 3.11 s is the time
is the acceleration of gravity (taking downward as positive direction)
Solving the formula, we find

Answer:
elliptical orbit
Explanation:
There are three laws of planetary motion, which are called Kepler's law of planetary motion.
First Law : It states that all the planets revolve around the sun in an elliptical path and the sun is at one focus of that elliptical path.
Answer:
force = 1 ×
N
Explanation:
given data
automobile mass = 1200 kg
insect mass = 0.0001 kg
insect accelerated = 100 m/s²
to find out
magnitude of the force the insect exerts on the car
solution
we get here force the insect exerts that is express as
force = mass × acceleration ............1
put here value we get
force = 0.0001 × 100 m/s²
force = 1 ×
N