Answer:
The answer to your question is a = -1.85 m/s² the acceleration is negative because it is coming to stop.
Explanation:
Data
vo = 25 m/s
t = 13.5 s
a= ?
vf = 0 m/s
Formula
vf = vo + at
solve for a
a = (vf - vo)/t
Substitution
a = (0 - 25) / 13.5
Simplification
a = -25/13.5
Result
a = -1.85 m/s²
Answer:
The time taken to reach the maximum height is 3.20 seconds
Explanation:
The given parameters are;
The initial height from which the volcano erupts the lava bomb = 64.4 m
The initial upward velocity of the lava bomb = 31.4 m/s
The acceleration due to gravity, g = 9.8 m/s²
The time it takes the lava bomb to reach its maximum height, t, is given by the following kinematic equation as follows;
v = u - g·t
Where;
v = The final velocity = 0 m/s at maximum height
u = The initial velocity = 31.4 m/s
g = The acceleration due to gravity = 9.8 m/s²
t = The time taken to reach the maximum height
Substituting the values gives;
0 = 31.4 - 9.8 × t
∴ 31.4 = 9.8 × t
t = 31.4/9.8 ≈ 3.204
The time taken to reach the maximum height rounded to three significant figures = t ≈ 3.20 seconds
California is the third largest state and the only two
bigger states than California are Alaska and Texas so it really depends on how
you want to cross it. There are two routes to cross California depending on how
you plan your visit and places you need to see. Depending on the route you take
crossing California can take from twelve to almost sixteen hours of drive.
Answer:
It represents the change in charge Q from time t = a to t = b
Explanation:
As given in the question the current is defined as the derivative of charge.
I(t) = dQ(t)/dt ..... (i)
But if we take the inegral of the equation (i) for the time interval from t=a to
t =b we get
Q =∫_a^b▒〖I(t) 〗 dt
which shows the change in charge Q from time t = a to t = b. Form here we can say that, change in charge is defiend as the integral of current for specific interval of time.
It mimics the movement of the waves