Answer:
<em>conservation of momentum and energy using a series of swinging spheres</em>
Answer:
The mass of the astronaut is approximately 119.74 kg
Explanation:
Assuming this problem as a Simple Harmonic Motion of a mass-spring system, the period (T) of the oscillations for a mass (m) and spring constant (k) is:
(1)
First, we have to calculate the spring constant using equation (1) and the data provided for the oscillations without the astronaut:
<em>(it’s important to note that one complete vibration is the period of the movement)</em>


Now with the value of k, we can use again (1) to find the mass of the astronaut (Ma) that makes the period to be 2.54 seconds


POWER is the capacity or potential to influence others.
Answer:
Speed = 2.25 m/s
Explanation:
(Assume a running step is 1.5 m long)
Given the following data;
Energy = 0.6J
Power = 61 Watts
Mass = 68 kg
To find how fast the person running;
First of all, we would determine the total mechanical energy being dissipated by the person.
Total energy = 0.6 * 68
Total energy = 40.8 Joules
Next, we find the time;
Energy = power * time
40.8 = 61 * time
Time = 61/40.8
Time = 1.5 seconds
Finally, to find the speed;
Speed = distance/time
Speed = number of steps * time
Speed = 1.5 * 1.5
Speed = 2.25 m/s