Wavelength = (speed) / (frequency) = (460 m/s) / (230/sec) = <em>2 meters</em>
The product of (wavelength) times (frequency) is always the same number ...
the speed of the wave in whatever material it's traveling through. So if the
frequency is increased, then the wavelength must <em><u>de</u></em>crease by the same
factor, in order to keep the product the same.
Answer:
The time it takes the proton to return to the horizontal plane is 7.83 X10⁻⁷ s
Explanation:
From Newton's second law, F = mg and also from coulomb's law F= Eq
Dividing both equations by mass;
F/m = Eq/m = mg/m, then
g = Eq/m --------equation 1
Again, in a projectile motion, the time of flight (T) is given as
T = (2usinθ/g) ---------equation 2
Substitute in the value of g into equation 2

Charge of proton = 1.6 X 10⁻¹⁹ C
Mass of proton = 1.67 X 10⁻²⁷ kg
E is given as 400 N/C, u = 3.0 × 10⁴ m/s and θ = 30°
Solving for T;

T = 7.83 X10⁻⁷ s
Answer:
it just pulls them at the same time
Explanation:
Explanation:
The formula to determine the eccentricity of an ellipse is the distance between foci divided by the length of the major axis