A, B, and D. You already answered the first one, so I wouldn't think this would be too hard
:)
Since valence shells in nonmetal atoms are almost full, the atoms attract electrons and hold them tightly to fill their valence shells.
Answer: The statement, average kinetic energy of the gas particles is greater in container A because its particles move faster is correct.
Explanation:
Kinetic energy is the energy obtained due to the motion of an object or substance.

where,
T = temperature
This means that kinetic energy is directly proportional to temperature.
So, when heat is provided to container A then its molecules will start to move rapidly from one place to another which will cause more collisions between the atoms.
Hence, average kinetic energy will be more in container A.
Whereas container B is placed at room temperature which is low than that in container A. So, molecules in container B will move at almost same speed and therefore, specific collisions will be there. So, average kinetic energy in container B will be less than that in container A.
Thus, we can conclude that the statement, average kinetic energy of the gas particles is greater in container A because its particles move faster is correct.
Explanation:
The mass of a pot is 300g and contains 90% aluminum. Find the number of moles of aluminum in the pot. P.A. (Al = 27)
The mass of aluminum present in the pot is:

Hence, in the given pot 270g Al is present.

The gram atomic mass of Al -27 g/mol
Given the mass of Al is 270 g
Substitute these values in the above formula:

Answer is 10.0 mol of Al is present.