Answer:
The average speed of the blocks are 0.36 m/s.
Explanation:
Average speed is defined as the ratio of distance covered per unit time. So if it is said that blocks are pulled to 0.9 m in the right side. This means the blocks cover a distance of 0.9 m from the origin and that distance is covered in 2.5 s. Thus, the average speed can be calculated from the change in speed with respect to time. As at time t = 0 , the speed is also zero, and at time t = 2.5 s , the speed will be.
Since, in this case, the speed is equal to the average speed of blocks. So the average speed of the blocks will be 0.36 m/s.
Answer is: 5.22·10²² atoms of Iodine.
m(CaI₂) = 12.75 g; mass of calcium iodide.
M(CaI₂) = 293.9 g/mol; molar mass of calcium iodide.
n(CaI₂) = m(CaI₂) ÷ M(CaI₂).
n(CaI₂) = 12.75 g ÷ 293.9 g/mol.
n(CaI₂) = 0.043 mol; amount of calcium iodide.
In one molecule of calcium iodide, there are two iodine atoms
n(I) = 2 · n(CaI₂).
n(I) = 0.086 mol; amount of iodine atoms.
Na = 6.022·10²³ 1/mol; Avogadro number.
N(I) = n(I) · Na.
N(I) = 0.086 mol · 6.022·10²³ 1/mol.
N(I) = 5.22·10²²; number of iodine atoms.
Answer:
the advantage of using Microsoft Excel to create a graph, as opposed to pen and paper is it will help you get the right answer
Explanation:
What helps me to balance equations is to list the elements i have on each side of the equation, and use tally marks to see what I have and don't have. Then when I'm done balancing, I tally again to make sure everything matches up.
On the left side, you have 1 Al, and 2 O. On the right side, 1 Al and 3 O.
In order for the equation to balance, you need to place a 2 in front of the AlO on the right side. This would make the Al have 2 atoms and the O have six. On the left side, you need to place a 2 in front of the Al and a 3 in front of the O, making it six. Left side: 2 Al's 6 O's. Right side: 2 Al's and 6 O's. Matches!
Answer:
265 mL is the new volume for the gas
Explanation:
We decompose the Ideal Gases Law in order to find the answer of this question: P . V = n . R . T
We can propose the formula for the 2 situations, where n remains constant.
R refers to 0.082 L.atm/mol.K which is physic constant.
We convert the temperature to Absolute value:
67.5°C + 273 = 340.5 K
80°C + 273 = 353 K
We convert the volume to L → 242.2 mL . 1 L/1000 mL = 0.2422 L
We convert the pressure values to atm:
882 Torr . 1 atm/ 760 Torr = 1.16 atm
840 Torr . 1atm / 760 Torr = 1.10 atm
P₁. V₁ / T₁ = P₂ . V₂ / T₂ → Let's replace data:
1.16 atm . 0.2422L / 340.5K = 1.10 atm . V₂ / 353 K
(1.16 atm . 0.2422L / 340.5K) . 353K = 1.10 atm . V₂
V₂ = 0.291 L.atm / 1.10 atm → 0.2647 L ≅ 265 mL