Answer:
= 0.5 m/s²
Explanation:
- According to Newton's second law of motion, the resultant force is directly proportion to the rate of change of linear momentum.
Therefore;<em> F = ma , where F is the Force, m is the mass and a is the acceleration.</em>
<em>Thus; a = F/m</em>
<em>but; F = 5 N, and m = 10 kg</em>
<em> a = 5 /10</em>
<u>= 0.5 m/s²</u>
Answer:
The fall in temperature of the liquid is 8.6 +/- 0.1 ⁰C
Explanation:
Given;
initial temperature of the liquid, t₁ = 76.3 +/- 0.4⁰C
final temperature of the liquid, t₂ = 67.7 +/- 0.3⁰C
The change in temperature of the liquid is calculated as;
Δt = t₂ - t₁
Δt = (67.7 - 76.3) +/- (0.3 - 0.4)
Δt = (-8.6) +/- (-0.1)
Δt = 8.6 +/- 0.1 ⁰C
Therefore, the fall in temperature of the liquid is 8.6 +/- 0.1 ⁰C
Answer:
An active pendulum has the most kinetic energy at the lowest point of its swing when the weight is moving fastest.
Explanation:
SO YOU HAVE THE LEAST KINETIC ENERGY AT THE HIGHEST POINT OF THE SWING WHEN IT'S NOT ACTIVE
The angles in the triangle are 91 degrees, 53 degrees and 36 degrees respectively.
<h3>What is the cosine rule?</h3>
From the cosine rule we know that;
c^2 = a^2 + b^2 - 2abcosC
Since;
a = 0.47 m
b = 0.62 m
c = 0.78 m
Then;
(0.78)^2 = (0.47)^2 + (0.62)^2 - 2(0.47 * 0.62)cosC
0.61 = 0.22 + 0.38 - 0.58 cosC
0.61 - ( 0.22 + 0.38) = - 0.58 cosC
0.01 = - 0.58 cosC
C = cos-1(0.01/-0.58)
C = 91 degrees
Using the sine rule;
b/Sin B = c/Sin C
0.62/sinB = 0.78/sin 91
0.62/Sin B = 0.78
B = sin-1 (0.62//0.78)
B = 53 degrees
Angle A is obtained from the sum of angles in a triangle;
180 - (91 + 53)
A = 36 degrees
Learn more about triangle:brainly.com/question/2773823
#SPJ1
Here's a fun and useful factoid:
The ratio of the voltages on a transformer is the same
as the ratio of the number of turns in each winding.
So the ratio of (345 to the secondary turns) is (115V to 24V).
That's a proportion.
(115/24) = (345/x)
I'll bet you can take it and solve it from here.
Just cross-multiply in the proportion and etc. etc.