Answer:
Option 4
Explanation:
A constellation can be defined as that region formed by the stars in such a way that the formation by the group of stars in that area appear to seem an imaginary pattern of some mythological creature, animal, god or some inanimate object formed apparently.
Thus in accordance with the above definition a constellation is a group of stars that forms some apparent pattern in the celestial sphere.
Answer: Object B
The velocity of object A is depicted in the graph as a straight line (constant speed therefore no acceleration).
The graph indicates that the velocity of object B increases (the object is accelerating).
Yes the lenses make the reflection bounce off
Answer:
r₂ = 4 r
Explanation:
For this exercise let's use Newton's second law with the magnetic force
F = q v x B
bold letters indicate vectors, the magnitude of this expression is
F = q v B sin θ
in this case we assume that the angle is 90º between the speed and the magnetic field.
If we use the rule of the right hand with the positive charge, the thumb in the direction of the speed, the fingers extended in the direction of the magnetic field, the palm points in the direction of the force, which is towards the center of the circle, therefore the force is radial and the acceleration is centripetal
a = v² / r
let's use Newton's second law
F = ma
q v B = m v² / r
r =
Let's apply this expression to our case.
Proton 1
r = \frac{qB_1}{mv_1}
Proton 2
r₂ = 
in the exercise indicate some relationships between the two protons
* v₁ = 2 v₂
v₂ = v₁ / 2
* B₂ = 2B₁
we substitute
r₂ =
r₂ = 4
r₂ = 4 r
Part A. For this part, we use two equations for linear
motion:
<span>y = y0 + v0 t + 0.5 g t^2 --->
1</span>
<span>vf = v0 + g t --->
2</span>
First we solve for t using equation 1: y0 = 0 (initial
point at top), y = 250 m, v0 = 0 (at rest)
250 = 0.5 (9.8) t^2
t = 7.143 s
Now we solve for final velocity vf using equation 2:
vf = g t
vf = 9.8 (7.143)
vf = 70 m/s
Part B. First we solve for the time it takes for the sound
to reach the tourist.
t(sound) = 250 / 335 = 0.746 s
Therefore the total time would be:
t = 0.746 s + 0.300 s
t = 1.05 s
<span>Hence there is enough time for the tourist to get out
before the boulder hits him.</span>