1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tia_tia [17]
3 years ago
8

Find analytically the velocity of the object at the end point of the inclined plane for a certain angle Ө

Physics
1 answer:
goldfiish [28.3K]3 years ago
8 0

I don't know if there is other given information that's missing here, so I'll try to fill in the gaps as best I can.

Let <em>m</em> be the mass of the object and <em>v</em>₀ its initial velocity at some distance <em>x</em> up the plane. Then the velocity <em>v</em> of the object at the bottom of the plane can be determined via the equation

<em>v</em>² - <em>v</em>₀² = 2 <em>a</em> <em>x</em>

where <em>a</em> is the acceleration.

At any point during its motion down the plane, the net force acting on the object points in the same direction. If friction is negligible, the only forces acting on the object are due to its weight (magnitude <em>w</em>) and the normal force (mag. <em>n</em>); if there is friction, let <em>f</em> denote its magnitude and let <em>µ</em> denote the coefficient of kinetic friction.

Recall Newton's second law,

∑ <em>F</em> = <em>m</em> <em>a</em>

where the symbols in boldface are vectors.

Split up the forces into their horizontal and vertical components. Then by Newton's second law,

• net horizontal force:

∑ <em>F</em> = <em>n</em> cos(<em>θ</em> + 90º) = <em>m</em> <em>a</em> cos(<em>θ</em> + 180º)

→  - <em>n</em> sin(<em>θ</em>) = - <em>m</em> <em>a</em> cos(<em>θ</em>)

→  <em>n</em> sin(<em>θ</em>) = <em>m</em> <em>a</em> cos(<em>θ</em>) ……… [1]

• net vertical force:

∑ <em>F</em> = <em>n</em> sin(<em>θ</em> + 90º) - <em>w</em> = <em>m</em> <em>a</em> sin(<em>θ</em> + 180º)

→   <em>n</em> cos(<em>θ</em>) - <em>m</em> <em>g</em> = - <em>m</em> <em>a</em> sin(<em>θ</em>)

→   <em>n</em> cos(<em>θ</em>) = <em>m</em> (<em>g</em> - <em>a</em> sin(<em>θ</em>)) ……… [2]

where in both equations, <em>a</em> is the magnitude of acceleration, <em>g</em> = 9.80 m/s², and friction is ignored.

Then by multiplying [1] by cos(<em>θ</em>) and [2] by sin(<em>θ</em>), we have

<em>n</em> sin(<em>θ</em>) cos(<em>θ</em>) = <em>m</em> <em>a</em> cos²(<em>θ</em>)

<em>n</em> cos(<em>θ</em>) sin(<em>θ</em>) = <em>m</em> (<em>g</em> sin(<em>θ</em>) - <em>a</em> sin²(<em>θ</em>))

<em>m</em> <em>a</em> cos²(<em>θ</em>) = <em>m</em> (<em>g</em> sin(<em>θ</em>) - <em>a</em> sin²(<em>θ</em>))

<em>a</em> cos²(<em>θ</em>) + <em>a</em> sin²(<em>θ</em>) = <em>g</em> sin(<em>θ</em>)

<em>a</em> = <em>g</em> sin(<em>θ</em>)

and so the object attains a velocity of

<em>v</em> = √(<em>v</em>₀² + 2 <em>g</em> <em>x</em> sin(<em>θ</em>))

If there is friction to consider, then <em>f</em> = <em>µ</em> <em>n</em>, and Newton's second law instead gives

• net horizontal force:

∑ <em>F</em> = <em>n</em> cos(<em>θ</em> + 90º) + <em>f</em> cos(<em>θ</em>) = <em>m</em> <em>a</em> cos(<em>θ</em> + 180º)

→   - <em>n</em> sin(<em>θ</em>) + <em>µ</em> <em>n</em> cos(<em>θ</em>) = - <em>m</em> <em>a</em> cos(<em>θ</em>)

→   <em>n</em> sin(<em>θ</em>) - <em>µ</em> <em>n</em> cos(<em>θ</em>) = <em>m</em> <em>a</em> cos(<em>θ</em>) ……… [3]

• net vertical force:

∑ <em>F</em> = <em>n</em> sin(<em>θ</em> + 90º) + <em>f</em> sin(<em>θ</em>) - <em>w</em> = <em>m</em> <em>a</em> sin(<em>θ</em> + 180º)

→   <em>n</em> cos(<em>θ</em>) + <em>µ</em> <em>n</em> sin(<em>θ</em>) - <em>m</em> <em>g</em> = - <em>m</em> <em>a</em> sin(<em>θ</em>)

→   <em>n</em> cos(<em>θ</em>) + <em>µ</em> <em>n</em> sin(<em>θ</em>) = <em>m</em> <em>g</em> - <em>m</em> <em>a</em> sin(<em>θ</em>) ……… [4]

Then multiply [3] by cos(<em>θ</em>) and [4] by sin(<em>θ</em>) to get

- <em>n</em> sin(<em>θ</em>) cos(<em>θ</em>) + <em>µ</em> <em>n</em> cos²(<em>θ</em>) = - <em>m</em> <em>a</em> cos²(<em>θ</em>)

<em>n</em> cos(<em>θ</em>) sin(<em>θ</em>) + <em>µ</em> <em>n</em> sin²(<em>θ</em>) = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>m</em> <em>a</em> sin²(<em>θ</em>)

and adding these together gives

<em>µ</em> <em>n</em> (cos²(<em>θ</em>) + sin²(<em>θ</em>)) = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>m</em> <em>a</em> (cos²(<em>θ</em>) + sin²(<em>θ</em>))

<em>µ</em> <em>n</em> = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>m</em> <em>a</em>

<em>m a</em> = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>µ</em> <em>n</em>

<em>m a</em> = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>µ</em> <em>m</em> <em>g</em> cos (<em>θ</em>)

<em>a</em> = <em>g</em> (sin(<em>θ</em>) - <em>µ</em> cos (<em>θ</em>))

and so the object would instead attain a velocity of

<em>v</em> = √(<em>v</em>₀² + 2 <em>g</em> <em>x</em> (sin(<em>θ</em>) - <em>µ</em> cos (<em>θ</em>)))

You might be interested in
What is sound advice for people becoming better listeners?
Andreas93 [3]

Answer:2

Explanation:

6 0
3 years ago
Read 2 more answers
What would happen if you place 2 Plane Mirrors parallel to each other?
e-lub [12.9K]

Answer:

No image will be observed.

Explanation:

Images that are created by mirrors are virtual images. This virtual image can only be seen by an observer. In this case, an infinite number of images or no image will be created here as both will be reflecting their own images. Light will continuously bounce back and forth reflecting the same image.

6 0
3 years ago
If there is an attractive force between all objects, why do we not feel ourselves gravitating toward massive buildings in our vi
mars1129 [50]
The mass of an object affects how powerful the attractive force is. To feel the pull / gravitation the mass of the object would have to be huge, bigger than that of massive buildings
8 0
3 years ago
Read 2 more answers
In the sport of curling, large smooth stones are slid across an ice court to land on a target. Sometimes the stones need to move
lara31 [8.8K]

Answer:

To increase kinetic friction, the amount of fine water droplets sprayed before the game is limited.

To reduce kinetic friction. increase the amount of fine water droplets during pregame preparation and sweeping in front of the curling stones.

Explanation:

In curling sports, since the ice sheets are flat, the friction on the stone would be too high and the large smooth stone would not travel half as far. Thus controlling the amount of fine water droplets sprayed before the game is limited pregame is necessary to increase friction.

On the other hand, reducing ice kinetic friction involves two ways. The first way is adding bumps to the ice which is known as pebbling. Fine water droplets are sprayed onto the flat ice surface. These droplets freeze into small "pebbles", which the curling stones "ride" on as they slide down the ice. This increases contact pressure which lowers the friction of the stone with the ice. As a result, the stones travel farther, and curl less.  

The second way to reduce the kinetic friction is sweeping in front of the large smooth stone. The sweeping action quickly heats and melts the pebbles on the ice leaving a film of water. This film reduces the friction between the stone and ice.

8 0
3 years ago
In circular orbit, the gravitational force on a satellite is A. constant in magnitude. B. at right angles to satellite motion. C
steposvetlana [31]

I would say C. if im wrong, im sorry. but if im right your welcome. i didnt guess tho.

6 0
3 years ago
Read 2 more answers
Other questions:
  • There are seven major levels of classification. Kingdom and phylum are just two of the levels. Which of the following are also m
    12·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
    11·2 answers
  • 3. A pendulum with a 1.0-kg weight is set in motion from a position 0.04 m above the lowest point on the path of the weight.
    15·1 answer
  • Volcano can form along all of the following except
    14·2 answers
  • A 70.9-kg boy and a 43.2-kg girl, both wearing skates face each other at rest on a skating rink. The boy pushes the girl, sendin
    5·1 answer
  • How are electromagnetic waves different than all other waves?
    9·2 answers
  • Two infinite plane sheets with uniform surface charge densities are placed parallel to each other with separation d. in the regi
    5·1 answer
  • A father racing his son has 1/2 the kinetic energy of the son, who has 1/4 the mass of the father. The father speeds up by 1.4 m
    15·1 answer
  • Trong cùng một nhiệt độ, lượng năng lượng trên mỗi mol của chất khí nào lớn nhất
    13·1 answer
  • Equilibrium is when all forces on an object are balanced true or false?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!