1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tia_tia [17]
3 years ago
8

Find analytically the velocity of the object at the end point of the inclined plane for a certain angle Ө

Physics
1 answer:
goldfiish [28.3K]3 years ago
8 0

I don't know if there is other given information that's missing here, so I'll try to fill in the gaps as best I can.

Let <em>m</em> be the mass of the object and <em>v</em>₀ its initial velocity at some distance <em>x</em> up the plane. Then the velocity <em>v</em> of the object at the bottom of the plane can be determined via the equation

<em>v</em>² - <em>v</em>₀² = 2 <em>a</em> <em>x</em>

where <em>a</em> is the acceleration.

At any point during its motion down the plane, the net force acting on the object points in the same direction. If friction is negligible, the only forces acting on the object are due to its weight (magnitude <em>w</em>) and the normal force (mag. <em>n</em>); if there is friction, let <em>f</em> denote its magnitude and let <em>µ</em> denote the coefficient of kinetic friction.

Recall Newton's second law,

∑ <em>F</em> = <em>m</em> <em>a</em>

where the symbols in boldface are vectors.

Split up the forces into their horizontal and vertical components. Then by Newton's second law,

• net horizontal force:

∑ <em>F</em> = <em>n</em> cos(<em>θ</em> + 90º) = <em>m</em> <em>a</em> cos(<em>θ</em> + 180º)

→  - <em>n</em> sin(<em>θ</em>) = - <em>m</em> <em>a</em> cos(<em>θ</em>)

→  <em>n</em> sin(<em>θ</em>) = <em>m</em> <em>a</em> cos(<em>θ</em>) ……… [1]

• net vertical force:

∑ <em>F</em> = <em>n</em> sin(<em>θ</em> + 90º) - <em>w</em> = <em>m</em> <em>a</em> sin(<em>θ</em> + 180º)

→   <em>n</em> cos(<em>θ</em>) - <em>m</em> <em>g</em> = - <em>m</em> <em>a</em> sin(<em>θ</em>)

→   <em>n</em> cos(<em>θ</em>) = <em>m</em> (<em>g</em> - <em>a</em> sin(<em>θ</em>)) ……… [2]

where in both equations, <em>a</em> is the magnitude of acceleration, <em>g</em> = 9.80 m/s², and friction is ignored.

Then by multiplying [1] by cos(<em>θ</em>) and [2] by sin(<em>θ</em>), we have

<em>n</em> sin(<em>θ</em>) cos(<em>θ</em>) = <em>m</em> <em>a</em> cos²(<em>θ</em>)

<em>n</em> cos(<em>θ</em>) sin(<em>θ</em>) = <em>m</em> (<em>g</em> sin(<em>θ</em>) - <em>a</em> sin²(<em>θ</em>))

<em>m</em> <em>a</em> cos²(<em>θ</em>) = <em>m</em> (<em>g</em> sin(<em>θ</em>) - <em>a</em> sin²(<em>θ</em>))

<em>a</em> cos²(<em>θ</em>) + <em>a</em> sin²(<em>θ</em>) = <em>g</em> sin(<em>θ</em>)

<em>a</em> = <em>g</em> sin(<em>θ</em>)

and so the object attains a velocity of

<em>v</em> = √(<em>v</em>₀² + 2 <em>g</em> <em>x</em> sin(<em>θ</em>))

If there is friction to consider, then <em>f</em> = <em>µ</em> <em>n</em>, and Newton's second law instead gives

• net horizontal force:

∑ <em>F</em> = <em>n</em> cos(<em>θ</em> + 90º) + <em>f</em> cos(<em>θ</em>) = <em>m</em> <em>a</em> cos(<em>θ</em> + 180º)

→   - <em>n</em> sin(<em>θ</em>) + <em>µ</em> <em>n</em> cos(<em>θ</em>) = - <em>m</em> <em>a</em> cos(<em>θ</em>)

→   <em>n</em> sin(<em>θ</em>) - <em>µ</em> <em>n</em> cos(<em>θ</em>) = <em>m</em> <em>a</em> cos(<em>θ</em>) ……… [3]

• net vertical force:

∑ <em>F</em> = <em>n</em> sin(<em>θ</em> + 90º) + <em>f</em> sin(<em>θ</em>) - <em>w</em> = <em>m</em> <em>a</em> sin(<em>θ</em> + 180º)

→   <em>n</em> cos(<em>θ</em>) + <em>µ</em> <em>n</em> sin(<em>θ</em>) - <em>m</em> <em>g</em> = - <em>m</em> <em>a</em> sin(<em>θ</em>)

→   <em>n</em> cos(<em>θ</em>) + <em>µ</em> <em>n</em> sin(<em>θ</em>) = <em>m</em> <em>g</em> - <em>m</em> <em>a</em> sin(<em>θ</em>) ……… [4]

Then multiply [3] by cos(<em>θ</em>) and [4] by sin(<em>θ</em>) to get

- <em>n</em> sin(<em>θ</em>) cos(<em>θ</em>) + <em>µ</em> <em>n</em> cos²(<em>θ</em>) = - <em>m</em> <em>a</em> cos²(<em>θ</em>)

<em>n</em> cos(<em>θ</em>) sin(<em>θ</em>) + <em>µ</em> <em>n</em> sin²(<em>θ</em>) = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>m</em> <em>a</em> sin²(<em>θ</em>)

and adding these together gives

<em>µ</em> <em>n</em> (cos²(<em>θ</em>) + sin²(<em>θ</em>)) = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>m</em> <em>a</em> (cos²(<em>θ</em>) + sin²(<em>θ</em>))

<em>µ</em> <em>n</em> = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>m</em> <em>a</em>

<em>m a</em> = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>µ</em> <em>n</em>

<em>m a</em> = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>µ</em> <em>m</em> <em>g</em> cos (<em>θ</em>)

<em>a</em> = <em>g</em> (sin(<em>θ</em>) - <em>µ</em> cos (<em>θ</em>))

and so the object would instead attain a velocity of

<em>v</em> = √(<em>v</em>₀² + 2 <em>g</em> <em>x</em> (sin(<em>θ</em>) - <em>µ</em> cos (<em>θ</em>)))

You might be interested in
Cho lực F ⃗=6x^3 i ⃗-4yj ⃗ tác dụng lên vật làm vật chuyển động từ A(-2,5) đến B(4,7). Vậy công của lực là:
Natasha2012 [34]

The work done by \vec F along the given path <em>C</em> from <em>A</em> to <em>B</em> is given by the line integral,

\displaystyle \int_C \mathbf F\cdot\mathrm d\mathbf r

I assume the path itself is a line segment, which can be parameterized by

\vec r(t) = (1-t)(-2\,\vec\imath + 5\,\vec\jmath) + t(4\,\vec\imath+7\,\vec\jmath) \\\\ \vec r(t) = (6t-2)\,\vec\imath+(2t+5)\,\vec\jmath \\\\ \vec r(t) = x(t)\,\vec\imath + y(t)\,\vec\jmath

with 0 ≤ <em>t</em> ≤ 1. Then the work performed by <em>F</em> along <em>C</em> is

\displaystyle \int_0^1 \left(6x(t)^3\,\vec\imath-4y(t)\,\vec\jmath\right)\cdot\frac{\mathrm d}{\mathrm dt}\left[x(t)\,\vec\imath + y(t)\,\vec\jmath\right]\,\mathrm dt \\\\ = \int_0^1 (288(3t-1)^3-8(2t+5)) \,\mathrm dt = \boxed{312}

7 0
3 years ago
Scientists plan to release a space probe that will enter the atmosphere of a gaseous planet. The temperature of the gaseous plan
barxatty [35]
D. 100 kilometers cuz the more kilometers the better the altitude!!!
6 0
3 years ago
Read 2 more answers
A light-year is the distance light travels in one year (at speed = 2.998 × 108 m/s). (a) how many meters are there in 11.0 light
larisa [96]
<span>The answers are as follows:

(a) how many meters are there in 11.0 light-years?

11.0 light years ( 365 days / 1 year ) ( 24 h / 1 day ) ( 60 min / 1 h ) ( 60 s / 1 min ) ( 2.998x10^8 m/s ) = 1.04x10^17 m

(b) an astronomical unit (au) is the average distance from the sun to earth, 1.50 × 108 km. how many au are there in 11.0 light-years?

1.04x10^17 m ( 1 au / </span>1.50 × 10^8 km <span>) ( 1 km / 1000 m) = 693329.472 au

(c) what is the speed of light in au/h? au/h

</span>2.998 × 10^8 m/s ( 1 au / 1.50 × 10^8 km ) ( 1 km / 1000 m) ( 3600 s / 1 h ) = 7.1952 au/h

8 0
3 years ago
When you cut yourself how does your body heal the wound
Naya [18.7K]
Chemicals are released by the damaged tissue to bring platelets to the area to become sticky and to plug the vessels. An inflammatory response occurs which brings immune cells to fight infection and other clotting factors come to begin forming a new tissue.
8 0
3 years ago
Read 2 more answers
Moon problem please help!
Mariulka [41]

Answer:

crescent Moon crescent Moon

4 0
3 years ago
Read 2 more answers
Other questions:
  • A box of groceries requires 5.0 newtons of force to lift it up 1.0 meter. How much work is done?
    11·2 answers
  • Alejandra weighs 225 newtons. how much work does she do against gravity when she climbs to a ledge at the top of a 15 meter clim
    9·1 answer
  • what will be the work done if a Unit chargeis moved from infinity to a distance 'R' from infinitely large charged sheet? CUT TO
    10·1 answer
  • What is the displacement of the runner, whose velocity versus time graph is shown in the Figure, in the first 15.5 s?
    10·1 answer
  • A soccer player kicks a 0.44 kg ball with a force of 57.6 N, what is the ball’s acceleration
    14·1 answer
  • What means of motion
    12·1 answer
  • Why the Earth is dependent on the Sun?
    9·1 answer
  • If a driver is tired, the thinking distance will be less. True or false.why?
    14·1 answer
  • One strategy in a snowball fight is to throw a snowball at a high angle over level ground. While your opponent is watching the f
    5·1 answer
  • You are holding a 1 kg rock and standing at the top of a cliff. You drop the rock off the cliff and it falls a distance 10 m. In
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!