1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tia_tia [17]
3 years ago
8

Find analytically the velocity of the object at the end point of the inclined plane for a certain angle Ө

Physics
1 answer:
goldfiish [28.3K]3 years ago
8 0

I don't know if there is other given information that's missing here, so I'll try to fill in the gaps as best I can.

Let <em>m</em> be the mass of the object and <em>v</em>₀ its initial velocity at some distance <em>x</em> up the plane. Then the velocity <em>v</em> of the object at the bottom of the plane can be determined via the equation

<em>v</em>² - <em>v</em>₀² = 2 <em>a</em> <em>x</em>

where <em>a</em> is the acceleration.

At any point during its motion down the plane, the net force acting on the object points in the same direction. If friction is negligible, the only forces acting on the object are due to its weight (magnitude <em>w</em>) and the normal force (mag. <em>n</em>); if there is friction, let <em>f</em> denote its magnitude and let <em>µ</em> denote the coefficient of kinetic friction.

Recall Newton's second law,

∑ <em>F</em> = <em>m</em> <em>a</em>

where the symbols in boldface are vectors.

Split up the forces into their horizontal and vertical components. Then by Newton's second law,

• net horizontal force:

∑ <em>F</em> = <em>n</em> cos(<em>θ</em> + 90º) = <em>m</em> <em>a</em> cos(<em>θ</em> + 180º)

→  - <em>n</em> sin(<em>θ</em>) = - <em>m</em> <em>a</em> cos(<em>θ</em>)

→  <em>n</em> sin(<em>θ</em>) = <em>m</em> <em>a</em> cos(<em>θ</em>) ……… [1]

• net vertical force:

∑ <em>F</em> = <em>n</em> sin(<em>θ</em> + 90º) - <em>w</em> = <em>m</em> <em>a</em> sin(<em>θ</em> + 180º)

→   <em>n</em> cos(<em>θ</em>) - <em>m</em> <em>g</em> = - <em>m</em> <em>a</em> sin(<em>θ</em>)

→   <em>n</em> cos(<em>θ</em>) = <em>m</em> (<em>g</em> - <em>a</em> sin(<em>θ</em>)) ……… [2]

where in both equations, <em>a</em> is the magnitude of acceleration, <em>g</em> = 9.80 m/s², and friction is ignored.

Then by multiplying [1] by cos(<em>θ</em>) and [2] by sin(<em>θ</em>), we have

<em>n</em> sin(<em>θ</em>) cos(<em>θ</em>) = <em>m</em> <em>a</em> cos²(<em>θ</em>)

<em>n</em> cos(<em>θ</em>) sin(<em>θ</em>) = <em>m</em> (<em>g</em> sin(<em>θ</em>) - <em>a</em> sin²(<em>θ</em>))

<em>m</em> <em>a</em> cos²(<em>θ</em>) = <em>m</em> (<em>g</em> sin(<em>θ</em>) - <em>a</em> sin²(<em>θ</em>))

<em>a</em> cos²(<em>θ</em>) + <em>a</em> sin²(<em>θ</em>) = <em>g</em> sin(<em>θ</em>)

<em>a</em> = <em>g</em> sin(<em>θ</em>)

and so the object attains a velocity of

<em>v</em> = √(<em>v</em>₀² + 2 <em>g</em> <em>x</em> sin(<em>θ</em>))

If there is friction to consider, then <em>f</em> = <em>µ</em> <em>n</em>, and Newton's second law instead gives

• net horizontal force:

∑ <em>F</em> = <em>n</em> cos(<em>θ</em> + 90º) + <em>f</em> cos(<em>θ</em>) = <em>m</em> <em>a</em> cos(<em>θ</em> + 180º)

→   - <em>n</em> sin(<em>θ</em>) + <em>µ</em> <em>n</em> cos(<em>θ</em>) = - <em>m</em> <em>a</em> cos(<em>θ</em>)

→   <em>n</em> sin(<em>θ</em>) - <em>µ</em> <em>n</em> cos(<em>θ</em>) = <em>m</em> <em>a</em> cos(<em>θ</em>) ……… [3]

• net vertical force:

∑ <em>F</em> = <em>n</em> sin(<em>θ</em> + 90º) + <em>f</em> sin(<em>θ</em>) - <em>w</em> = <em>m</em> <em>a</em> sin(<em>θ</em> + 180º)

→   <em>n</em> cos(<em>θ</em>) + <em>µ</em> <em>n</em> sin(<em>θ</em>) - <em>m</em> <em>g</em> = - <em>m</em> <em>a</em> sin(<em>θ</em>)

→   <em>n</em> cos(<em>θ</em>) + <em>µ</em> <em>n</em> sin(<em>θ</em>) = <em>m</em> <em>g</em> - <em>m</em> <em>a</em> sin(<em>θ</em>) ……… [4]

Then multiply [3] by cos(<em>θ</em>) and [4] by sin(<em>θ</em>) to get

- <em>n</em> sin(<em>θ</em>) cos(<em>θ</em>) + <em>µ</em> <em>n</em> cos²(<em>θ</em>) = - <em>m</em> <em>a</em> cos²(<em>θ</em>)

<em>n</em> cos(<em>θ</em>) sin(<em>θ</em>) + <em>µ</em> <em>n</em> sin²(<em>θ</em>) = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>m</em> <em>a</em> sin²(<em>θ</em>)

and adding these together gives

<em>µ</em> <em>n</em> (cos²(<em>θ</em>) + sin²(<em>θ</em>)) = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>m</em> <em>a</em> (cos²(<em>θ</em>) + sin²(<em>θ</em>))

<em>µ</em> <em>n</em> = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>m</em> <em>a</em>

<em>m a</em> = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>µ</em> <em>n</em>

<em>m a</em> = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>µ</em> <em>m</em> <em>g</em> cos (<em>θ</em>)

<em>a</em> = <em>g</em> (sin(<em>θ</em>) - <em>µ</em> cos (<em>θ</em>))

and so the object would instead attain a velocity of

<em>v</em> = √(<em>v</em>₀² + 2 <em>g</em> <em>x</em> (sin(<em>θ</em>) - <em>µ</em> cos (<em>θ</em>)))

You might be interested in
Zeros are never significant digits true or false
liraira [26]
This affirmative is false
7 0
3 years ago
Read 2 more answers
4. How long will it take a car travelling with a speed of 160 km hr to cover a distance of 700 meters? Hint: km/hr should be con
Inessa [10]

Answer:

15.8 seconds

Explanation:

Create an extended calculation to convert all the unit to what you need.

160 km      1000 m       1 hour         1 min

----------- x ------------- x -------------- x ----------   =  44.4 m/s

1 hour            1 km         60 min      60 sec

So 160km/hr is equal to 44.4m/s

Now you can figure out how many seconds it will take to go 700 meters.

44.4 m          

----------   X     x sec   =  700 m

1  sec

Solve for x sec

x sec = 700m / 44.4 m/s

         =  15.8 seconds

3 0
3 years ago
The following three hot samples have the same temperature. The same amount of heat is removed from each sample. Which one experi
melomori [17]

Complete Question:

The following three hot samples have the same temperature. The same amount of heat is removed from each sample. Which one experiences the smallest drop in temperature, and which one experiences the largest drop? Sample A: 4.0 kg of water [c = 4186 J/(kg·C°)] Sample B: 2.0 kg of oil [c = 2700 J/(kg·C°)] Sample C: 9.0 kg of dirt [c = 1050 J/(kg·C°)]

Answer:

A. Smallest B. Largest.

Explanation:

Assuming no heat exchange except for the heat removed from any sample (which we know is the same for the three ones), and that the process is done using only conduction, we can use the equation that relates the heat lost or gained by one object, with the mass of the object and the consequent change in temperature, as follows:

Q = c*m*ΔT, where c, is a proportionality constant called specific heat, which is different for each material.

As we know that the heat removed is the same for the three samples, we can equate the right sides of the equation for each sample, as follows:

cw*mw*ΔTw = co*mo*ΔTo = cd*md*ΔTd

Replacing by the givens, we have:

4.0 kg. 4,186 J/kgºC*ΔT(ºC) = 2.0 kg*2,700 J/kgºC*ΔT(ºC) =9.0kg*1,050J/kgºC*ΔT(ºC)

As the three expressions must be equal each other, it's clear that the unknown term (the drop in temperature) must compensate the product of the mass times the specific heat.

This product is the following for the three samples:

Water: 4.0 kg*4,186 J/kgºC = 16,744 J/ºC

Oil : 2.0 kg*2,700 J/kgºC    = 5,400 J/ºC

Dirt: 9.0 * 1,050 J/kgºC        = 9,450 J/ºC

Clearly, we see that in order to keep the heat exchange equations equal each other, the water must suffer the smallest drop in temperature, and the oil must experience the largest one.

So, the sample A experiencies the smallest drop in temperature, and sample B does the largest one.

5 0
3 years ago
What is the speed of a truck traveling 10km in 10 minutes
user100 [1]

Answer: 58.8235 km/h

speed = distance/time

the distance is 10 km

the time is 10 minutes

the unit is not correct, so we first change minute to hour

so 10/60 is 0.166667, rounded to 0.17.

10 km/ 0.17 hours =

8 0
1 year ago
Please help, and show steps. Thank you very much!
Vikentia [17]
V = 8 * 10^2 km/h = 800km/h
S= 1,8* 10^3 km = 1800km
t = ?
v = S/t
t = S/v
t = 1800km/ 800km/h
t ≈ 2,25h (135min)
6 0
4 years ago
Other questions:
  • Olivia is comparing two products: limestone and coffee. Limestone is made from minerals, and coffee is made from plant seeds. Wh
    6·2 answers
  • As you brake your bicycle, your velocity changes from 20 east m/s to 10 east m/s in 5 seconds.
    11·1 answer
  • A car is parked on a cliff overlooking the ocean on an incline that makes an angle of 24.0° below the horizontal. The negligent
    8·1 answer
  • A gas is heated from 263 K to 298 K, and the volume is increased from 24 L to 35 L. If the original pressure is 1 atm, what woul
    10·1 answer
  • What is the relation between inertia and mass?
    14·1 answer
  • PLEASE HELP (WILL GIVE BRAINLIEST TO BEST ANSWER!!!!!)
    11·1 answer
  • Define a machine in the physics subject ​
    8·1 answer
  • An object of mass 100kg is moving with a velocity of 5m/s. Calculate the kinetic energy of that object
    13·2 answers
  • What happens inside when an air-filled, sealed can, is heated?.
    13·2 answers
  • A-Some resistors are labelled with a red band. This shows that their true resistance will be within 2, point, 0, percent,2.0% of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!