1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tia_tia [17]
3 years ago
8

Find analytically the velocity of the object at the end point of the inclined plane for a certain angle Ө

Physics
1 answer:
goldfiish [28.3K]3 years ago
8 0

I don't know if there is other given information that's missing here, so I'll try to fill in the gaps as best I can.

Let <em>m</em> be the mass of the object and <em>v</em>₀ its initial velocity at some distance <em>x</em> up the plane. Then the velocity <em>v</em> of the object at the bottom of the plane can be determined via the equation

<em>v</em>² - <em>v</em>₀² = 2 <em>a</em> <em>x</em>

where <em>a</em> is the acceleration.

At any point during its motion down the plane, the net force acting on the object points in the same direction. If friction is negligible, the only forces acting on the object are due to its weight (magnitude <em>w</em>) and the normal force (mag. <em>n</em>); if there is friction, let <em>f</em> denote its magnitude and let <em>µ</em> denote the coefficient of kinetic friction.

Recall Newton's second law,

∑ <em>F</em> = <em>m</em> <em>a</em>

where the symbols in boldface are vectors.

Split up the forces into their horizontal and vertical components. Then by Newton's second law,

• net horizontal force:

∑ <em>F</em> = <em>n</em> cos(<em>θ</em> + 90º) = <em>m</em> <em>a</em> cos(<em>θ</em> + 180º)

→  - <em>n</em> sin(<em>θ</em>) = - <em>m</em> <em>a</em> cos(<em>θ</em>)

→  <em>n</em> sin(<em>θ</em>) = <em>m</em> <em>a</em> cos(<em>θ</em>) ……… [1]

• net vertical force:

∑ <em>F</em> = <em>n</em> sin(<em>θ</em> + 90º) - <em>w</em> = <em>m</em> <em>a</em> sin(<em>θ</em> + 180º)

→   <em>n</em> cos(<em>θ</em>) - <em>m</em> <em>g</em> = - <em>m</em> <em>a</em> sin(<em>θ</em>)

→   <em>n</em> cos(<em>θ</em>) = <em>m</em> (<em>g</em> - <em>a</em> sin(<em>θ</em>)) ……… [2]

where in both equations, <em>a</em> is the magnitude of acceleration, <em>g</em> = 9.80 m/s², and friction is ignored.

Then by multiplying [1] by cos(<em>θ</em>) and [2] by sin(<em>θ</em>), we have

<em>n</em> sin(<em>θ</em>) cos(<em>θ</em>) = <em>m</em> <em>a</em> cos²(<em>θ</em>)

<em>n</em> cos(<em>θ</em>) sin(<em>θ</em>) = <em>m</em> (<em>g</em> sin(<em>θ</em>) - <em>a</em> sin²(<em>θ</em>))

<em>m</em> <em>a</em> cos²(<em>θ</em>) = <em>m</em> (<em>g</em> sin(<em>θ</em>) - <em>a</em> sin²(<em>θ</em>))

<em>a</em> cos²(<em>θ</em>) + <em>a</em> sin²(<em>θ</em>) = <em>g</em> sin(<em>θ</em>)

<em>a</em> = <em>g</em> sin(<em>θ</em>)

and so the object attains a velocity of

<em>v</em> = √(<em>v</em>₀² + 2 <em>g</em> <em>x</em> sin(<em>θ</em>))

If there is friction to consider, then <em>f</em> = <em>µ</em> <em>n</em>, and Newton's second law instead gives

• net horizontal force:

∑ <em>F</em> = <em>n</em> cos(<em>θ</em> + 90º) + <em>f</em> cos(<em>θ</em>) = <em>m</em> <em>a</em> cos(<em>θ</em> + 180º)

→   - <em>n</em> sin(<em>θ</em>) + <em>µ</em> <em>n</em> cos(<em>θ</em>) = - <em>m</em> <em>a</em> cos(<em>θ</em>)

→   <em>n</em> sin(<em>θ</em>) - <em>µ</em> <em>n</em> cos(<em>θ</em>) = <em>m</em> <em>a</em> cos(<em>θ</em>) ……… [3]

• net vertical force:

∑ <em>F</em> = <em>n</em> sin(<em>θ</em> + 90º) + <em>f</em> sin(<em>θ</em>) - <em>w</em> = <em>m</em> <em>a</em> sin(<em>θ</em> + 180º)

→   <em>n</em> cos(<em>θ</em>) + <em>µ</em> <em>n</em> sin(<em>θ</em>) - <em>m</em> <em>g</em> = - <em>m</em> <em>a</em> sin(<em>θ</em>)

→   <em>n</em> cos(<em>θ</em>) + <em>µ</em> <em>n</em> sin(<em>θ</em>) = <em>m</em> <em>g</em> - <em>m</em> <em>a</em> sin(<em>θ</em>) ……… [4]

Then multiply [3] by cos(<em>θ</em>) and [4] by sin(<em>θ</em>) to get

- <em>n</em> sin(<em>θ</em>) cos(<em>θ</em>) + <em>µ</em> <em>n</em> cos²(<em>θ</em>) = - <em>m</em> <em>a</em> cos²(<em>θ</em>)

<em>n</em> cos(<em>θ</em>) sin(<em>θ</em>) + <em>µ</em> <em>n</em> sin²(<em>θ</em>) = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>m</em> <em>a</em> sin²(<em>θ</em>)

and adding these together gives

<em>µ</em> <em>n</em> (cos²(<em>θ</em>) + sin²(<em>θ</em>)) = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>m</em> <em>a</em> (cos²(<em>θ</em>) + sin²(<em>θ</em>))

<em>µ</em> <em>n</em> = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>m</em> <em>a</em>

<em>m a</em> = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>µ</em> <em>n</em>

<em>m a</em> = <em>m</em> <em>g</em> sin(<em>θ</em>) - <em>µ</em> <em>m</em> <em>g</em> cos (<em>θ</em>)

<em>a</em> = <em>g</em> (sin(<em>θ</em>) - <em>µ</em> cos (<em>θ</em>))

and so the object would instead attain a velocity of

<em>v</em> = √(<em>v</em>₀² + 2 <em>g</em> <em>x</em> (sin(<em>θ</em>) - <em>µ</em> cos (<em>θ</em>)))

You might be interested in
How much Nitrogen (N) atoms are in this 3NH4Cl?
mihalych1998 [28]

Answer:

3

Explanation:

7 0
3 years ago
An astronaut with a mass of 91 kg is 0.30 m above the moons surface. The astronauts potential energy is 46 J. Calculate the free
Blababa [14]

Answer:

the free-fall acceleration on the moon is 1.68 m/s^2

Explanation:

recall the formula for the gravitational potential energy (under acceleration of gravity "g"):

PE = m * g * h

replacing with our values for the problem:

46 J = 91 * g * 0.3

solve for the "g" on the Moon:

g = 46 / (91 * 0.3)

g = 1.68  m/s^2

3 0
3 years ago
Pooping in my room and my room is upstairs and upstairs bathroom upstairs
diamong [38]

Answer:

huh? do you need help on math?

Explanation:

what do you mean?

7 0
2 years ago
Most nuclear waste in the US is ____.
solmaris [256]
The most waste is Yucca mtn. in Nevada
<span />
8 0
3 years ago
Read 2 more answers
Ask Your Teacher Cam Newton of the Carolina Panthers throws a perfect football spiral at 6.9 rev/s. The radius of a pro football
faltersainse [42]

Answer:

a=159.32\ m/s^2

Explanation:

It is given that,

Angular speed of the football spiral, \omega=6.9\ rev/s=43.35\ rad/s

Radius of a pro football, r = 8.5 cm = 0.085 m

The velocity is given by :

v=r\omega

v=0.085\times 43.35

v = 3.68 m/s

The centripetal acceleration is given by :

a=\dfrac{v^2}{r}

a=\dfrac{(3.68)^2}{0.085}

a=159.32\ m/s^2

So, the centripetal acceleration of the laces on the football is 159.32\ m/s^2. Hence, this is the required solution.

6 0
3 years ago
Other questions:
  • What is the direction of transfer of energy in the waves produced?
    15·2 answers
  • What is one difference between an electromagnetic wave and a mechanical wave?
    8·2 answers
  • The ____________________ (Newton/Kelvin) is the SI unit for temperature.
    6·1 answer
  • A 1.70 kg block slides on a horizontal, frictionless surface until it encounters a spring with a force constant of 955 N/m. The
    5·1 answer
  • This electromagnetic wave has a very high penetrating power. It is emitted during the decay of many radioactive isotopes, such a
    9·2 answers
  • Although blood cells are contained within a special liquid called plasma, the cells themselves are___________.
    6·1 answer
  • Do earthquakes and volcanoes occur anywhere away from plate boundaries
    14·1 answer
  • The average lifespan of an incandescent lightbulb (at 60 W) is 1,200 hours. How much energy does the incandescent lightbulb use
    8·1 answer
  • please answer as soon as possible. How does the gravitational pull of different objects in space affect other objects in space?
    6·1 answer
  • Actiong-reaction of the bat hits the ball.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!