<h3>
![\tt Kc=\dfrac{[CO_2]}{[C][O_2]}](https://tex.z-dn.net/?f=%5Ctt%20Kc%3D%5Cdfrac%7B%5BCO_2%5D%7D%7B%5BC%5D%5BO_2%5D%7D)
</h3><h3>Further explanation</h3>
Given
Reaction
C+02 = CO2
Required
The equilibrium constant
Solution
The equilibrium constant is the ratio of concentration or pressure between the product and the reactant with each reaction coefficient raised
The equilibrium constant is based on the concentration (Kc) in a reaction
pA + qB -----> mC + nD
![\large {\boxed {\bold {Kc ~ = ~ \frac {[C] ^ m [D] ^ n} {[A] ^ p [B] ^ q}}}}](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5Cbold%20%7BKc%20~%20%3D%20~%20%5Cfrac%20%7B%5BC%5D%20%5E%20m%20%5BD%5D%20%5E%20n%7D%20%7B%5BA%5D%20%5E%20p%20%5BB%5D%20%5E%20q%7D%7D%7D%7D)
So for the reaction :
C+O₂ ⇔ CO₂
![\tt Kc=\dfrac{[CO_2]}{[C][O_2]}](https://tex.z-dn.net/?f=%5Ctt%20Kc%3D%5Cdfrac%7B%5BCO_2%5D%7D%7B%5BC%5D%5BO_2%5D%7D)
Answer:
-10778.95 J heat must be removed in order to form the ice at 15 °C.
Explanation:
Given data:
mass of steam = 25 g
Initial temperature = 118 °C
Final temperature = 15 °C
Heat released = ?
Solution:
Formula:
q = m . c . ΔT
we know that specific heat of water is 4.186 J/g.°C
ΔT = final temperature - initial temperature
ΔT = 15 °C - 118 °C
ΔT = -103 °C
now we will put the values in formula
q = m . c . ΔT
q = 25 g × 4.186 J/g.°C × -103 °C
q = -10778.95 J
so, -10778.95 J heat must be removed in order to form the ice at 15 °C.
Answer:
The value of x will be "1.4".
Explanation:
The given values are:
y = 9.6
z = 4.0
As we know,
The relation between x, y and z is:
⇒ 
and,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
The answer is A hope this help
The equation that relates both energy and wavelength is:

where e is the energy and lambda is the wavelength.
Therefore, as we can see from this equation, the energy of an electromagnetic wave is inversely related to the wavelength of the electromagnetic wave.