<h3><u>Answer;</u></h3>
Cations are much smaller than their corresponding parent
<h3><u>Explanation;</u></h3>
- Parent atom has more electrons and thus the effective nuclear charge on each electron is less.
- When a cation is formed electron(s) is/are lost. Thus the effective nuclear charge or simply put, the attraction of the nucleus towards the electrons increases. Therefore, due to greater pull, the nucleus pulls the shells towards it, there by reducing the size, which makes cations smaller than their corresponding parent.
Answer: Benzene is less reactive than methylbenzoate and more reactive than Nitrobenzene
Explanation:
This is because the methyl group on the benzene ring is an electron donating group leading to the activation of the ring and subsequently leading to more canonical resonance structure at the intermediate stage of the reaction enhancing the faster reactivity
However for the Nitrobenzene the nitro group is an electron withdrawing group leading to a slower activation and less resonance canonical structure at the reaction intermediate leading to a slower reaction than the reaction of benzene without the nitro group
Answer:
trigonal pyramidal
Explanation:
In NF3, the nitrogen atom is sp3 hybridized. Now we must remember that according to the VSEPR theory, the number of electron pairs in the valence shell of the central atom in a molecule determines its shape.
Here, the nitrogen atom is the central atom and its outermost shell is surrounded by four electron pairs - one lone pair and three bond pairs. This means that it has a tetrahedral electron pair geometry.
However, due to the lone pair, the three fluorine atoms are arranged in a trigonal pyramidal geometry. Hence the correct shape of the molecule is trigonal pyramidal.
<span>the Brazil Current has the warmest water</span>