Answer:
a strange world that has baffled scientists ever since it was discovered in 1930. It is not the large gas giant that one might expect to find in the outer reaches of the solar system.
Explanation:
Explanation
Answer:
The correct answer is a. Both are the same
Explanation:
For this calculation we must use the gravitational attraction equation
F = G m M / r²
Where M will use the mass of the Earth, m the mass of the girl and r is the distance of the girl to the center of the earth that we consider spherical
To better visualize things, let's repair the equation a little
F = m (G M / r²)
The amount in parentheses called acceleration of gravity, entered the force called peos
g = G M / r²
F = W
W = m g
When analyzing this equation we see that the variation in the weight of the girl depends on the distance, which is the radius of the earth plus the height where the girl is
r = Re + h
Re = 6.37 10⁶ m
r² = (Re + h)²
r² = Re² (1 + h / Re)²
Let's replace
W = m (GM / Re²) (1+ h / Re)⁻²
W = m g (1+ h / Re)⁻²
This is the exact expression for weight change with height, but let's look at its values for some reasonable heights h = 6300 m (very high mountain)
h / Re = 10
⁻³
(1+ h / Re)⁻² = 0.999⁻²
Therefore, the negligible weight reduction, therefore, for practical purposes the weight does not change with the height of the mountain on Earth
The correct answer is a
The total work done is 957.56 joules. This is calculated as work is equal to 25N time 50 meters time cosine 40 degrees.
Answer:
20573.67N
Explanation:
Given;
mass (m) of the car = 2130kg
angle of inclination Θ = 15⁰
The normal force (F) on the car is given by
F = mgcosΘ
where g is the acceleration due to gravity.
Taking g as 10
and substituting the values of m and Θ into the equation. We have;
F = 2130 x 10 x cos 15⁰
F = 2130 x 10 x 0.9659
F = 20573.67N
Therefore the normal force on the car is 20573.67N
Answer:
1) is equal to, 2) is equal to, connected and moving along the same track.
Explanation:
1) The speed of the small engine car <em>is equal to</em> the speed of the massive cargo car.
2) The magnitude of the acceleration of the small engine car <em>is equal to</em> the magnitude of the acceleration of massive cargo car because they are <em>connected and moving along the same track</em>.