The given question is incomplete. The complete question is:
The change in entropy is related to the change in the number of moles of gas molecules. Determine the change in moles of gas for each of the reactions and decide if the entropy increases decreases or has little to no change:
A. 
B. 
C. 
D.
Answer: A.
: decreases
B.
: decreases
C.
: no change
D.
: increases
Explanation:
Entropy is defined as the randomness of the system.
Entropy is said to increase when the randomness of the system increase, is said to decrease when the randomness of the system decrease and is said to have no change when the randomness remains same.
In reaction
, as gaseous reactant is changed to solid product, entropy decreases.
In reaction
, as 4 moles of gaseous reactants is changed to 2 moles of gaseous product, entropy decreases.
In reaction
, as 3 moles of gaseous reactants is changed to 3 moles of gaseous product, entropy has no change.
In reaction
, as 1 mole of gaseous reactant is changed to 3 moles of gaseous product, entropy increases.
Answer
× 10²³ molecules are in 41.8 g of sulfuric acid
Explanation
The first step is to convert 41.8 g of sulfuric acid to moles by dividing the mass of sulfuric acid by its molar mass.
Molar mass of sulfuric acid, H₂SO₄ = 98.079 g/mol

Finally, convert the moles of sulfuric acid to molecules using Avogadro's number.
Conversion factor: 1 mole of any substance = 6.022 × 10²³ molecules.
Therefore, 0.426187053 moles of sulfuric acid is equal

Thus, 2.57 × 10²³ molecules are in 41.8 g of sulfuric acid.
<span>The theory general relativity was discovered by Albert Einstein </span>
Answer:
Sprinkling of powder on the carom board <u>reduces</u> friction.
Answer:
Explanation:
Given that
d= 35 μm ,yield strength = 163 MPa
d= 17 μm ,yield strength = 192 MPa
As we know that relationship between diameter and yield strength


d = diameter
K =Constant

So now by putting the values
d= 35 μm ,yield strength = 163 MPa
------------1
d= 17 μm ,yield strength = 192 MPa
------------2
From equation 1 and 2

K=394.53
By putting the values of K in equation 1


Now when d= 12 μm

