Answer: third energy level
Explanation: In a sodium atom, the highest-energy principal energy level containing electrons is the third energy level, and that energy level contains one electron.
"The reaction is exothermic and ΔH is negative" can be understood about the reaction and the enthalpy change (ΔH) during the reaction.
<u>Option: D</u>
<u>Explanation:</u>
When the reaction is positive, the process becomes endothermic, i.e. heat appears to be consumed by the system because the reaction products are more enthalpic than the reactants. When the reaction is negative, on the other hand, the process is exothermic, which is the total decrease in enthalpy is caused by heat production. Here the initial temperature is 21.0 C but increase in final temperature to 38.8 C, because if some processes require heat, others must give off heat when they take place.
The following Balanced Reaction will take place:
Zn + 2HCl → ZnCl₂ + H₂
In the question, we have 2 moles of Zinc and 3 moles of HCl for this reaction
<u>Amount of HCl required to completely react with 2 moles of Zn:</u>
Since we need 2 moles of HCl for every mole of Zn, we will need 2(2) = 4 moles of HCl for every 2 moles of Zn
<u>Identifying the Limiting Reagent:</u>
But we are only given 3 moles of HCl where we need 4 moles to completely react.
So, since HCl is in less amount, it is the Limiting Reagent
Answer:
dium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential direction of flow (as in transport phenomena). More specifically, the fluid's overall linear and angular momenta remain null over time. The kinetic energies of the molecular Brownian motions, together with those of molecular rotations and vibrations, sum up to the caloric component of a fluid's internal energy (the Equipartition theorem).
Explanation:
The partial pressure of gas C is 0.902 atm
calculation
partial pressure of gas c =[( percent by volume of gas C / total percent) x total pressure]
percent by volume of gas C= 22%
Total percent = 36% +42% + 22% = 100 %
Total pressure = 4.1 atm
partial pressure of gas C is therefore = 22/100 x 4.1 atm = 0.902 atm