<h3>
Answer:</h3>
1031.4 Calories.
<h3>
Explanation:</h3>
We are given;
Mass of the copper metal = 50.0 g
Initial temperature = 21.0 °C
Final temperature, = 75°C
Change in temperature = 54°C
Specific heat capacity of copper = 0.382 Cal/g°C
We are required to calculate the amount of heat in calories required to raise the temperature of the copper metal;
Quantity of heat is given by the formula,
Q = Mass × specific heat capacity × change in temperature
= 50.0 g × 0.382 Cal/g°C × 54 °C
= 1031.4 Calories
Thus, the amount of heat energy required is 1031.4 Calories.
We need (i) the stoichiometric equation, and (ii) the equivalent mass of dihydrogen.
Explanation:
1
2
N
2
(
g
)
+
3
2
H
2
(
g
)
→
N
H
3
(
g
)
11.27
g
of ammonia represents
11.27
⋅
g
17.03
⋅
g
⋅
m
o
l
−
1
=
?
?
m
o
l
.
Whatever this molar quantity is, it is clear from the stoichiometry of the reaction that 3/2 equiv of dihydrogen gas were required. How much dinitrogen gas was required?
Answer:
The metric system uses units such as meter, liter, and gram to measure length, liquid volume, and mass, just as the U.S. customary system uses feet, quarts, and ounces to measure these.
Volume: 1 liter is a little more than 1 quart
Mass: 1 kilogram is a little more than 2 pounds
Length: 1 centimeter is a little less than half an
Explanation:
Answer:
WAIT
good luck on whatever this is for my dude.