This question can be solved by using the equations of motion.
a) The initial speed of the arrow is was "9.81 m/s".
b) It took the arrow "1.13 s" to reach a height of 17.5 m.
a)
We will use the second equation of motion to find out the initial speed of the arrow.

where,
vi = initial speed = ?
h = height = 35 m
t = time interval = 2 s
g = acceleration due to gravity = 9.81 m/s²
Therefore,

<u>vi = 9.81 m/s</u>
b)
To find the time taken by the arrow to reach 17.5 m, we will use the second equation of motion again.

where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 17.5 m
vi = initial speed = 9.81 m/s
t = time = ?
Therefore,

solving this quadratic equation using the quadratic formula, we get:
t = -3.13 s (OR) t = 1.13 s
Since time can not have a negative value.
Therefore,
<u>t = 1.13 s</u>
Learn more about equations of motion here:
brainly.com/question/20594939?referrer=searchResults
The attached picture shows the equations of motion in the horizontal and vertical directions.
Their are 8 planets.
<span>Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.
</span>Their were 9 planets.
The key difference between a bomb calorimeter and a coffee cup calorimeter is high temperature.
<h3>
What is bomb calorimeter?</h3>
A bomb calorimeter is an apparatus that can measure heats of combustion, used in various applications such as calculating the calorific value of foods and fuels.
<h3>What is coffee cup calorimeter?</h3>
A coffee cup calorimeter is a cup used to provide insulation when materials are mixed inside of it.
<h3>Difference between the two calorimeter</h3>
- The coffee cup calorimeter can't be used for high-temperature reactions, either, because they would melt the cup.
- A bomb calorimeter is used to measure heat flows for gases and high-temperature reactions
Learn more about calorimeter here: brainly.com/question/1407669
#SPJ1
Answer:
x =4.5 10⁴ m
Explanation:
To find the distance that the particle moves we must use the equations of motion in one dimension and to find the acceleration of the particle we will use Newton's second law
m = 2.00 mg (1 g / 1000 ug) (1 Kg / 1000g) = 2.00 10-6 Kg
q = -200 nc (1C / 10 9 nC) = -200 10-9 C
Let's calculate the acceleration
F = ma
F = q E
a = qE / m
a = -200 10⁻⁹ 1000 / 2.00 10⁻⁶
a = 1 10² m / s²
Let's use kinematics to find the distance traveled before stopping, where it has zero speed (Vf = 0)
Vf² = Vo² -2 a x
0 = Vo² - 2 a x
x = Vo² / 2a
x = 3000²/ 2100
x =4.5 10⁴ m
This is the distance the particule stop, after this distance in the field accelerates in the opposite direction of the initial
Second part
In this case Newton's second law is applied on the y axis
F -W = 0
F = w = mg
E q = mg
E = mg / q
E = 2.00 10⁻⁶ 9.8 / 200 10⁻⁹
E = 9.8 10⁵ C
The direction of the field is such that the force on the particle is up, as the particle has a negative charge, the field must be directed downwards F = qE = (-q) E