1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scorpion4ik [409]
3 years ago
14

In still​ water, a boat averages 18 18 miles per hour. it takes the same amount of time to travel 16 miles 16 miles ​downstream,

with the​ current, as it does 8 8 miles​ upstream, against the current. what is the rate of the​ water's current?
Physics
1 answer:
Vladimir79 [104]3 years ago
4 0
<span>The current is 6 miles per hour.
   Let's create a few equations:
 Traveling with the current:
 (18 + c)*t = 16

   Traveling against the current:
 (18 - c)*t = 8

   Let's multiply the 2nd equation by 2
 (18 - c)*t*2 = 16

   Now subtract the 1st equation from the equation we just doubled.
 (18 - c)*t*2 = 16
 (18 + c)*t = 16

   (18 - c)*t*2 - (18 + c)*t = 0
 Divide both sides by t
 (18 - c)*2 - (18 + c) = 0

   Now solve for c
 (18 - c)*2 - (18 + c) = 0
 36 - 2c - 18 - c = 0
 36 - 2c - 18 - c = 0
 18 - 3c = 0
 18 = 3c
  6 = c

   So the current is 6 mph.
   Let's verify that.
 (18 + 6)*t = 16
 24*t = 16
 t = 16/24 = 2/3

   (18 - 6)*t = 8
 12*t = 8
 t = 8/12 = 2/3

   And it's verified.</span>
You might be interested in
Lee pushes horizontally with a force of 75 n on a 36 kg mass for 10 m across a floor. calculate the amount of work lee did. answ
svlad2 [7]
To find work, you use the equation: W = Force X Distance X Cos (0 degrees)
Following the Law of Conservation of Energy, energy cannot be destroyed nor created.

So you would do 75 N x 10m x Cos (0 degrees)= 750 J
8 0
3 years ago
Read 2 more answers
What was also changed in the "Levers" lab when the position of the fulcrum was changed?
erastova [34]

Effort force

Explanation:

When the potion of fulcrum and weight is changed, the mechanical advantage changes.Increasing the distance between the fulcrum and the effort, there is a proportion increase in effort required to lift a load.The ration of the distance from the fulcrum to the position of input and output application gives the mechanical advantage in levers when losses due to friction are not considered.

Learn More

Mechanical advantage in Levers : brainly.com/question/11600677

Keywords : Levers, fulcrum, position

#LearnwithBrainly

4 0
3 years ago
7.1 Project Guidelines 2021
Ede4ka [16]
I’m not sure if this will help but I found: https://prezi.com/l0fa6du3b9kp/going-off-the-grid-assignment/?fallback=1 and
3 0
2 years ago
10. Hamilton How long does it take Lewis travelling at 156 m.p.h to cover 16 miles?
Anvisha [2.4K]

Answer: Hello!

Lewis is travelling at 165 mph, which means miles per hour, this says that he does 165 miles in one hour.

We want to know how much time takes to cover 16 miles.

this can be calculated as the quotient of the distance and the velocity; this is:

t = \frac{16 mi}{165 mi/h} = 0.096 h

if we want to write this in minutes, then:

we know that one hour has 60 minutes, then 0.096 hours has:

0.096h*60mins/1h = 5.8 minutes.

then Lewis needs 5.8 minutes in order to cover 16 miles if his speed is 156 miles per hour.

6 0
3 years ago
Read 2 more answers
(b) The distance of mass from mass A if there is no gravitational force acted on C
shepuryov [24]

Answer:

(a) The force, acting on object 'C' is approximately 2.66972 × 10⁻¹⁰ Newtons

(b) The distance of 'C' from 'A', in the direction particle 'B' if there is no  meters gravitational force acting on 'C' is appromimately 0.829 meters or 1.877 meters

Explanation:

The given parameters are;

The mass of particle, A, m₁ = 2 kg

The mass of particle, B, m₂ = 0.3 kg

The mass of particle, C, m₃ = 0.05 kg

The distance between particle 'A' and particle 'B', r₁ = 0.15 m

The distance between particle 'B' and particle 'C', r₂ = 0.05 m

(a) The gravitational force, 'F', is given as follows;

F =G \times \dfrac{m_{1} \times m_{2}}{r^{2}}

Where;

F = The force between the two masses

G = The gravitation constant = 6.67430 × 10⁻¹¹ N·m²/kg²

m₁ = The mass of object 1

m₂ = The mass of object 2

If 'C' is placed at 0.05 m from 'B', we have;

F₂₃ =  6.67430 × 10⁻¹¹ × 0.05 × 0.3/(0.05²) ≈ 4.00458 × 10⁻¹⁰

The gravitational force between force between particle 'B' and particle 'C', F₂₃ = 4.00458 × 10⁻¹⁰ N (towards the right)

F₁₃ =  6.67430 × 10⁻¹¹ × 0.05 × 2/(0.1²) ≈ × 10⁻¹⁰

The gravitational force between force between particle 'A' and particle 'B', F₁₃ = 6.6743 × 10⁻¹⁰ N (towards the left)

The force, 'F', acting on object 'C' = F₁₃ - F₂₃

F = (6.6743 - 4.00458) × 10⁻¹⁰ = 2.66972 × 10⁻¹⁰ N

The force, acting on object 'C' ≈ 2.66972 × 10⁻¹⁰ N

(b), When there is no gravitational force acting on 'C', let the distance of 'C' from 'A' = x

We have;

F₂₃ = F₁₂

F_{23} =G \times \dfrac{m_{1} \times m_{2}}{r_1^{2}} = F_{13} =G \times \dfrac{m_{1} \times m_{3}}{r_2^{2}}

By plugging in the values and removing like terms, we get;

\dfrac{0.3 \times 0.05}{(1.15 - x)^{2}}  = \dfrac{2 \times 0.05}{x^2}

(1.15 - x)² × 2 × 0.05 = 0.3 × 0.05 × x²

0.1·x² - 0.23·x + 1.3225 = 0.015·x²

0.1·x² - 0.23·x + 1.3225 - 0.015·x² = 0

0.085·x² - 0.23·x + 0.13225= 0

x = (0.23± √((-0.23)² - 4 × 0.085 × ( 0.13225)))/(2 × 0.085))

x ≈ 0.829, or x ≈ 1.877

Therefore, the distance of 'C' from 'A', if there is no gravitational force acting on 'C', x ≈ 0.829 m, or x = 1.877 m, in the direction of 'B'

7 0
2 years ago
Other questions:
  • What is N{2}+H{2}=NH{3}
    9·1 answer
  • Oxygen is inhaled and is then distibuted throughout the bloodstream is what two body systems?​
    14·1 answer
  • Solar panels allow us to harness ___________ energy and convert it to __________ energy to heat water.
    15·1 answer
  • A gas has a volume of 1.5 L at 375 kPa.
    14·1 answer
  • 5. A sunbather at the beach absorbs the thermal energy from the sun through
    15·1 answer
  • 135g of an unknown substance gains 9133 J of heat as it is heated from 25⁰C to 100⁰C. Using the chart below, determine the ident
    13·1 answer
  • The 600-N ball shown is suspended on a string AB and rests against the frictionless vertical wall. The string makes an angle of
    6·1 answer
  • A student puts a besker of warm water next to a besker of cold water so that they fough which two statements are true? DA Therma
    10·1 answer
  • A 235-kg merry-go-round at the Great Escape in Lake George is in the shape of a uniform, solid, horizontal disk of radius 1.50 m
    7·1 answer
  • A student is planning an experiment to find
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!