The moles of disodium edta used is calculated using the below formula
moles =molarity x volume in liters
molarity=0.050m
volume in liters = 22/1000=0.022 L
moles is therefore= 0.022 x0.050 =1.1 x10^-3 moles of disodium edta
Z is the solvent, Y is soluble in water while X is insoluble in water.
<h3>Filtration</h3>
Filtration is a method of separation of substances based on particle size. Only a particular particle size can pass through the filter. The substance that remains in the filter is the residue while the substances that passes through the filter is called the filtrate.
From the observation in the question Z is the solvent, Y is soluble in water while X is insoluble in water.
Learn more about separation of mixtures: brainly.com/question/863988
Answer:
They might not be bringing in enough oxygen from the air. It's hard to play soccer if you don't have enough oxygen in your cells. They might not be breaking down starch to make glucose.
Explanation:
Answer:
Explanation:
Problem 1
<u>1. Data</u>
<u />
a) P₁ = 3.25atm
b) V₁ = 755mL
c) P₂ = ?
d) V₂ = 1325 mL
r) T = 65ºC
<u>2. Formula</u>
Since the temeperature is constant you can use Boyle's law for idial gases:

<u>3. Solution</u>
Solve, substitute and compute:


Problem 2
<u>1. Data</u>
<u />
a) V₁ = 125 mL
b) P₁ = 548mmHg
c) P₁ = 625mmHg
d) V₂ = ?
<u>2. Formula</u>
You assume that the temperature does not change, and then can use Boyl'es law again.

<u>3. Solution</u>
This time, solve for V₂:

Substitute and compute:

You must round to 3 significant figures:

Problem 3
<u>1. Data</u>
<u />
a) V₁ = 285mL
b) T₁ = 25ºC
c) V₂ = ?
d) T₂ = 35ºC
<u>2. Formula</u>
At constant pressure, Charle's law states that volume and temperature are inversely related:

The temperatures must be in absolute scale.
<u />
<u>3. Solution</u>
a) Convert the temperatures to kelvins:
- T₁ = 25 + 273.15K = 298.15K
- T₂ = 35 + 273.15K = 308.15K
b) Substitute in the formula, solve for V₂, and compute:

You must round to two significant figures: 290 ml
Problem 4
<u>1. Data</u>
<u />
a) P = 865mmHg
b) Convert to atm
<u>2. Formula</u>
You must use a conversion factor.
Divide both sides by 760 mmHg

<u />
<u>3. Solution</u>
Multiply 865 mmHg by the conversion factor:

Answer:
The answer to your question is
1.- Volume = 3.4 ml
2.- Volume = 0.61 ml
3.- Mass = 2872.8 pounds
Explanation:
Problem 1
Volume = 18 ml
mass = 35.6 g
density = 10.5 g/ml
Process
1.- Calculate the volume of silver
Formula

solve for volume

Substitution

<u>volume = 3.4 ml</u>
2.- Problem 2
Total volume = ?
Volume = 18 + 3.4
Volume = 21.4 ml
Data
mass = 8.3 g
density = 13.6 g(ml
volume = ?
Formula

Solve for volume

Substitution

Result
<u>volume = 0.61 ml</u>
3.- Problem 3
Data
volume = 345 gal
density = 1 g/ml
mass = ?
Formula

Solve for mass
mass = density x volume
Covert gal to ml
1 gal --------------- 3785 ml
345 gal ------------- x
x = (345 x 3785) / 1
x = 1305825 ml
Substitution
mass = 1 x 1305825
mass = 1305825 g
Convert g to pounds
1 g ------------------- 0.0022 pounds
1305825 g ---------------- x
x = (1305825 x 0.0022)
<u> x = 2872.8 pounds</u>