Answer : The smallest unit of a substance that behaves like the substance is, molecule.
Explanation :
Pure substance : It is defined as a substance that is made by the combination of only one type of atom or only one type of molecule.
Compound : It is a pure substance which is made from atoms of different elements combined together in a fixed ratio by mass.
Element : It is a pure substance which is composed of atoms of similar elements.
Molecule : It is the smallest particle in the chemical compound or chemical element or a substance that has the same chemical properties of that compound or element.
Hence, the smallest unit of a substance that behaves like the substance is, molecule.
Answer:
(a)
: reverse reaction is favored.
(b)
: reverse reaction is favored.
(c)
: reverse reaction is favored.
(d)
: forward reaction is favored.
Explanation:
Hello,
(a)
:
In this case, since the Ka is lower than 1, we infer the reverse reaction is favored since the reactant (acetic acid) will tend to have a higher concentration.
(b)
:
In this case, since the Ka is lower than 1, we infer the reverse reaction is favored since the reactant (silver chloride) will tend to have a higher concentration.
(c) 
In this case, since the Ka is lower than 1, we infer the reverse reaction is favored since the reactant (aluminium hydroxide) will tend to have a higher concentration.
(d) 
In this case, since the Ka is greater than 1, we infer the forward reaction is favored since the product (C) will tend to have a higher concentration.
Regards.
First, we need to find the amount of winks in an hour, to simplify it so we can answer easier. Since there are 60 minutes in an hour, we can multiply 5 by 60 to find the number of winks in an hour.
5*60=300
Now multiply 300 by 8.
300*8=2,400
She winks exactly 2,400 times per day.
Hope this helps!
Answer:
A long lever with the fulcrum as close as possible to the load
Explanation:
If F be the effort , W be the weight , L₁ be the distance of load from fulcrum and L₂ be the distance of effort from the fulcrum ,
Taking moment of force about the fulcrum , we have
W x L₁ = F x L₂
F = W x ( L₁ / L₂ )
F will be minimum when L₁ will be minimum .
Hence fulcrum should be as close as possible to the load.