Answer: The correct answer is option E
Explanation:
Sodium/potassium pump is a mechanism that involves the movement of sodium ions (Na+) out of a cell and potassium ions (K+) into a cell, thereby regulating concentration of ions on both sides of a typical cell membrane.
In this situation, the sodium-potassium pump is usually helps in the establishment of the resting potential. The potassium voltage channels normally closes before the membrane potential is brought to a resting level.
In summary, sodium/potassium pump helps to maintain a balance in the system.
Answer:
4 g OF IODINE-131 WILL REMAIN AFTER 32 DAYS.
Explanation:
Half life (t1/2) = 8 days
Original mass (No) = 64 g
Elapsed time (t) = 32 days
Mass remaining (Nt) = ?
Using the half life equation we can obtain the mass remaining (Nt)
Nt = No (1/2) ^t/t1/2
Substituting the values, we have;
Nt = 64 * ( 1/2 ) ^32/8
Nt = 64 * (1/2) ^4
Nt = 64 * 0.0625
Nt = 4 g
So therefore, 4 g of the iodine-131 sample will remain after 32 days with its half life of 8 days.